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Abstract: The topic of this paper is a novel Bayesian continuous-basis field representation

and inference framework. Within this paper several problems are solved: The maximally in-

formative inference of continuous-basis fields, that is where the basis for the field is itself a

continuous object and not representable in a finite manner; the tradeoff between accuracy of

representation in terms of information learned, and memory or storage capacity in bits; the

approximation of probability distributions so that a maximal amount of information about

the object being inferred is preserved; an information theoretic justification for multigrid

methodology. The maximally informative field inference framework is described in full

generality and denoted the Generalized Kalman Filter. The Generalized Kalman Filter al-

lows the update of field knowledge from previous knowledge at any scale, and new data, to

new knowledge at any other scale. An application example instance, the inference of con-

tinuous surfaces from measurements (for example, camera image data), is presented.

Keywords: Bayesian inference; Generalized Kalman filter; Kalman filter; Kullback-Leibler

distance; Maximally informative statistical inference; Knowledge representation; Mini-

mumDescription Length; Sufficient statistics; Multigrid methods; Adaptive scale inference;
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1 Overview

The paper begins by reviewing traditional approaches to surface representation and inference.

Then the new �eld representation and inference paradigm is introduced within the context of

maximally informative (MI) inference [5], early ideas appearing in [4]. The knowledge represen-

tation distribution is introduced and discussed in the context of MI inference. Then, using the

MI inference approach, the here-named Generalized Kalman Filter (GKF) equations are derived

for a speci�c example instance of inferring a surface height �eld. The GKF equations motivate a

location-dependent adaptive scale or multigrid approach to the MI inference of continuous-basis

�elds.

2 Introduction: Surface representation

2.1 Traditional methods

Many methods for representing surfaces have been utilized previously, however these methods in-

volve representing the surface by a discrete basis �eld, perhaps with a deterministic interpolation

de�ned (bi-linear, tensor B-splines, etc.) to provide a de�nition for the surface at points inter-

mediate to the discrete �eld. Probability distributions or densities of these discrete �elds then

often take the form of normalized exponentials of sums of clique energy functions, and produce

a construct commonly known as a Markov Random Field. (See Geman [2], for an often cited

example.) There are several immediate observations on these approaches:

� The surface remains unspeci�ed at points intermediate to the discrete �eld, except by the

often unde�ned notion of interpolation.

� When interpolation is not de�ned, the discrete �eld probability distribution says nothing

about the probability distribution of surface at points intermediate to the discrete �eld

points.

� When interpolation is de�ned then, given a value of the discrete �eld, there is no uncertainty

in the surface intermediate to the discrete �eld points. There is a deterministic mapping

from any given discrete �eld to the corresponding continuous surface. In particular, when

the discrete �eld basis covers a �xed grid on the (x; y) plane with z heights at each grid

point, known here as a height �eld, all sampling of the surface intermediate to the �xed grid

is determined at the scale of the �xed grid. This is generally not physical, see next.

� The surface distribution is not an intrinsic property of any physical surface, rather a post-

hoc imposition of the analyst attempting a useful regularization. For instance, necessary
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scaling properties are ignored: Moving a camera closer to the surface, for example, so that

the density of sample points on the physical surface increases, is not properly represented

in the �xed basis of the discrete �eld distribution; there is no consistency imposed that

requires a subsampled set of points to have the same probability density that one would �nd

by marginalizing the surface distribution over the sample points not in the subsampling.

2.2 Scaling consistency

The consistency condition mentioned in the last section, which must be imposed on probability

distributions for continuous �elds is:

Scaling of sample points consistency: For S � A indices of discrete �eld variables,

P (XS) =
Z
P (XA) dXAnS (1)

Note that equation 1 is a condition which must be imposed on the distributions which any mod-

elling system learns where it is sensible to supersample or subsample the �eld arbitrarily, as in

the continuous �eld basis case.

2.3 Elements of the paradigm

The rest of this paper discusses an approach to continuous �eld inference which corrects the

de�ciencies, including the intermediate value and scaling problems, of traditional discrete-basis

approaches to the inference of discrete height �elds, for example. The new approach is here named

the Generalized Kalman Filter.

There are four central objects of importance within the inference approach described in this

paper, one of which is a new object to Bayesian inference:

� The prior distribution for �eld. The prior holds all information about �elds before any data

is observed.

� The likelihood distribution. The likelihood is predictive for data, given the �eld. It incor-

porates all of the physics of the measurement process.

� The posterior distribution. The posterior distribution summarizes everything knowable

about the �eld given assumptions of likelihood form, the prior knowledge, and all data.

� The knowledge-representation (KR) distribution. Within the usual Bayesian point of

view, the KR distribution is the new mathematical object. In the paradigm described

in this paper the KR distribution is the object updated when new data arrives. The KR
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distribution is parameterized by maximally informative statistics (see [5]) for the learned �eld

knowledge. Note that because the KR distribution has a �nite number-of-values limitation,

the KR distribution is not necessarily able to represent what could have been learned from

data about the (continuous) �eld. Generally, the prior distribution and the KR distribution

determine an approximation (possibly exact) to the �eld posterior distribution. It should

be noted that modern computer architecture (memory and space-time) constraints appear

to be the fundamental physical drivers for the utilization of the KR distribution, simply

because storing the exact posterior generally requires an in�nite amount of memory.

In the height �eld inference application discussed later the KR distribution is parameterized

by heights at a set of discrete basis points, but holds knowledge about a continuous basis

height �eld. However, generally, the KR distribution may use an arbitrary set of basis

functions.

One advance of the GKF is that the KR distribution is naturally adaptive in both dimension

and scale, allowing the learning of continuous-basis �eld information at the appropriate scale,

where appropriate.

Bene�ts of the approach described in this paper are that it has these information theoretically

optimal features: 1. A location-dependent adaptive and scalable multigrid-like algorithm, so that

only the bytes necessary to represent the learned information are stored, leading to a style of

maximally sparse representation of surface knowledge; 2. A recursive updating algorithm. It will

become clear that the Bayesian GKF �eld inference paradigm also has these properties:

� It is the information learned about the �eld, (the KR distribution), which takes the form

of a distribution over discrete values. In the surface inference example these discrete values

are heights at discrete basis points.

� The prior distribution for �elds, in conjunction with the learned knowledge of the �eld held

within the KR distribution determine a well-de�ned posterior distribution over continuous

�elds.

� The �eld posterior distribution is always a well de�ned quantity everywhere. In the surface

inference example discussed later, this continuity is at points intermediate to the discrete

height �eld basis points of the KR distribution.

� The scaling condition equation 1 is automatically imposed because the posterior distribution

is a distribution over �elds.

As an example consider the inference of continuous surfaces: While it may seem obvious, in the

case of continuous surface inference, that what one is actually representing with a discrete set of
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values in memory is only a part of the information which helps to determine the surface posterior

distribution, it is unusual to not be discussing the height �eld as the primary representation of

surface. It is the inherently discrete nature of the storage of information in machines which forces

us into this stance - generally it is impossible to represent an arbitrary continuous �eld with a �nite

set of discrete values - one must also have another object from which to compute the intermediate

values of the �eld. (Another way to look at the disparity between the current proposal for �eld

inference and traditional proposals is that the traditional approaches are suÆcient only for band-

limited �elds.)

In section 3 the GKF is specialized to height �elds, where an example, surface representation and

learning, of the GKF paradigm is described. (The approach taken in this section is to specialize to a

case that is then easily seen to generalize to the general continuous basis �eld inference paradigm.)

The next section continues with observations on the update scheme. Further sections continue

with the example special case for surface distributions with particularly tractable mathematics,

and �nal sections provide explicit forms for the general GKF equations, a discussion on their

relationship to the standard Kalman �lter, a discussion on the amount of information learned at

each update, and a search heuristic. Extensive appendices provide supporting mathematics for

the derivations.

3 Surface representation and inference

In this section the main ideas of the Bayesian surface representation and inference paradigm

presented in this paper are given. The technique is general, though: section 4 discusses the

extension to an arbitrary-basis, arbitrary-dimension �eld.

3.1 Surface distributions

The surface and height �eld distributions (the prior, likelihood, and posterior surface and height

�eld distributions) are discussed in this section.

3.1.1 Surface and height �eld prior distributions

Consider a set S of surfaces where each element s 2 S is a height �eld, i.e. such that s = s(x; y)

is real function of two variables. Write the prior probability distribution for surfaces in S given

the parameters � which determine the prior distribution as

P (s j �): (2)

Consider a vector v = (v1; : : : ; vn) of discrete (x; y) points, vi = (xi; yi). For any given surface

s denote the associated vector of heights by h(s; v) = (h1(s; v); : : : ; hn(s; v)). Write the prior
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distribution of the surface heights at the chosen points v as P (hv j �). This discrete height

distribution may be found as follows:

P (hv j �) =
Z
P (hv j s; �)P (s j �) ds (3)

=
Z
P (hv j s)P (s j �) ds (4)

=
Z
Æ(hv � h(s; v))P (s j �) ds (5)

where the vector delta-function is de�ned as

Æ(hv � h(s; v)) = �n
i=1Æ(hv;i � hi(s; v)) (6)

Now, given that what is known is the surface heights hv at a vector v of discrete (x; y) points,

the posterior distribution of surfaces is found from Bayes' theorem as

P (s j hv; �) =
P (hv j s; �)P (s j �)

P (hv j �) (7)

=
P (hv j s)P (s j �)

P (hv j �) (8)

=
Æ(hv � h(s; v))P (s j �)R
Æ(hv � h(s; v))P (s j �) ds (9)

where the denominator distribution was found in equation 5.

3.1.2 Measurements: The Likelihood

In general, a surface s and some other parameters � not dependent upon s (i.e. camera point

spread function, camera position and direction, lighting position and direction, etc.) specify the

probability distribution for data (likelihood)

P (x j s; �; �) = P (x j s; �) (10)

where the data distribution is independent of � once s is known.

3.1.3 Conditioning on data: Surface and height �eld posterior distributions

Given data, the surface posterior distribution is inferred using Bayes' theorem as

P (s j x; �; �) =
P (x j s; �; �)P (s j �; �)

P (x j �; �) (11)

=
P (x j s; �)P (s j �)R
P (x j s; �)P (s j �) ds (12)
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The distribution of the surface posterior marginalized to a set of discrete points may be written

using equations 11{12, doing steps similar to those taken in equations 3{5, as

P (hv j x; �; �) =
Z
P (hv j s;x; �; �)P (s j x; �; �) ds (13)

=
Z
P (hv j s)P (s j x; �; �) ds (14)

=
Z
Æ(hv � h(s; v))P (s j x; �; �) ds (15)

In steps similar to equations 7{9 the surface posterior when a height �eld is also known is given

by

P (s j hv;x; �; �) =
P (hv;x j s; �; �)P (s j �; �)

P (hv;x j �; �) (16)

=
P (hv j s)P (x j s; �)P (s j �)

P (hv;x j �; �) (17)

=
Æ(hv � h(s; v))P (x j s; �)P (s j �)R
Æ(hv � h(s; v))P (x j s; �)P (s j �) ds (18)

where we used the facts that, given a surface, the data and the surface heights are independent,

and the surface distribution is independent of the camera and lighting parameters �.

3.2 Approximating the posterior

One motivation for approximating the surface distribution is that generally a surface is an uncount-

ably in�nite, continuous entity, and therefore there is little else which can be done to represent

it exactly other than to go into, literally, in�nite detail (requiring an in�nite supply of memory).

It is therefore useful to have an approximation scheme which, although �nite, captures the rel-

evant information provided by data. Another excellent reason for developing an approximation

is mathematical tractability. Having a representation scheme which allows a tractable calcula-

tion of the posterior is a huge bene�t for both computation and communication. Finally, it is of

great interest to not waste computational resources while representing learned surface information.

The solution to the surface representation problem presented here addresses the competition for

representational resources (memory) issue in a unique manner.

3.2.1 The knowledge representation distribution

The full posterior may be written in the form

P (s j x; �; �) =
Z
P (s j hv;x; �; �)P (hv j x; �; �) dhv (19)
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where the distributions inside the integral appear in equations 13{18. The issue of generating

a �nite representation is not yet resolved via equation 19 however, since storing information

suÆcient to determine the distributions P (s j x; �; �), and P (s j hv;x; �; �) generally requires

storing an in�nite set of values in a �nite amount of memory, or requires that all data be stored,

disallowing any discarding of data and the incremental updating of the representation. Instead,

consider the following approximation where the prior conditioned on a set of heights, along with

a new distribution, the knowledge representation distribution P̂ (hv j x; �; �), are substituted for

the distributions inside the integral of equation 19.

P̂ (s j P̂ (hv j x; �; �) ) =
Z
P (s j hv; �) P̂ (hv j x; �; �) dhv (20)

It is important to note at this point that any suitable surface distribution may be substituted into

the right-hand side of equation 20 for P (s j hv; �), since it is important only that the resulting

integral be capable of making a good approximation to the true posterior. Further, it is not

necessary to restrict the basis v to discrete height �eld basis points, any suitable basis may be

taken, for instance Fourier components. Although all of the calculations of this paper are carried

thru with the form of 20, other forms may prove more convenient, and it is not diÆcult to suggest

others. In particular, since equation 20 will be used in an iterative update loop later, updates

that take for the right-hand side prior term the last posterior term appear quite reasonable (the

corresponding GKF update equations may be found immediately from those presented later).

Although conditioning on the KR distribution P̂ (hv j x; �; �) may seem strange, a good way

to understand the meaning is that it is the KR distribution which is being used as a statistic for

the learned surface information. The key thing to notice in equation 20 is that, with reasonable

regularity conditions, choosing the points of v suÆciently dense, the approximation desired to the

full posterior may become arbitrarily good. The trick will be to choose v appropriately, prop-

erly weighting the competing need to approximate arbitrarily well everywhere with the limited

resources that are imposed when a �nite amount of storage is available, i.e. when the dimensional-

ity of v is �xed. This will be addressed in the next section. In the case of simple imaging systems,

the point spread function and pixel diameter are good indicators of the necessary sampling scale

for v. In the super-resolved case, the resolution expected available from the data is the appropriate

scale for v.

The approximation to the posterior of 20 has several properties which make it valuable:

� The prior distribution P (s j hv; �) which supplies the uncertainties associated with points

of the surface not in the vector v may be chosen to have a simple form (see appendix 12.1)

that is easily encoded algorithmically in �nite memory.

� There is a clear separation between what was already known - the prior P (s j hv; �), and

what has been learned - the KR distribution P̂ (hv j x; �; �).
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� There is a clear description of the scale at which information has been acquired in terms of

the density and uncertainties associated with the points (v; h(s; v)) on the surface, and in

terms of the uncertainties of their positions as encoded in the KR distribution.

In practice, it is useful to take a multinormal distribution over the discrete-point height �eld

as the KR distribution. Let the parameterization of the KR distribution be �v. For example, if

the KR is taken to be multinormal then the parameters of that distribution are

�v(x) = (�v(x);�v(x)); (21)

the mean and covariance matrix of the multinormal, where the functional dependence on x in-

dicates a data dependency through the update procedure, and the subscript v indicates that the

parameters parameterize a distribution of heights at points v. Because the KR distribution and

its parameters are related by a one-to-one mapping, re-write equation 20 as

P̂ (s j �v; �) =
Z
P (s j hv; �) P̂ (hv j �v) dhv: (22)

In summary, we have arrived at an approximation to the surface posterior distribution, via the

KR distribution, parameterized by �v.

3.3 Updating the knowledge representation

Now we discuss updating �v when new data are acquired. Temporarily restrict attention to the

�xed v case. During this and the next sections refer to �gure 1 for a owchart of the general GKF

update process.

3.3.1 Bayes' theorem

Having acquired �n
v = �v(x

n), from previously seen data xn = (x1; : : : ;xn) and upon seeing new

data xn+1, the goal is to �nd �n+1
v such that the surface distribution given �n+1

v approximates

the surface distribution given xn+1 and �n
v . Given new data xn+1 in the context of the previously

seen data xn summarized by �n
v , our updated surface distribution is found via Bayes' theorem

P̂ (s j xn+1;�
n
v ; �; �) =

P (xn+1 j s;�n
v ; �; �)P̂ (s j �n

v ; �; �)

P̂ (xn+1 j �n
v ; �; �)

=
P (xn+1 j s; �)P̂ (s j �n

v ; �)

P̂ (xn+1 j �n
v ; �; �)

=
P (xn+1 j s; �)P̂ (s j �n

v ; �)R
P (xn+1 j s; �)P̂ (s j �n

v ; �) ds
(23)
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where we de�ned

P̂ (xn+1 j �n
v ; �; �) =

Z
P (xn+1 j s; �)P̂ (s j �n

v ; �) ds: (24)

The updated posterior P̂ (s j �n
v ;xn+1; �; �) will be approximated by the �n+1

v parameterized KR

distribution of equation 22 as

P̂ (s j �n+1
v ; �) =

Z
P (s j hv; �) P̂ (hv j �n+1

v ) dhv: (25)

The approximation condition for determining �n+1
v is then written

P̂ (s j �n+1
v ; �) � P̂ (s j xn+1;�

n
v ; �; �) (26)

Equation 26 suggests we try to minimize various measures of the closeness of the two distributions.

For example, one measure is the average square di�erence of the two distributions,Z
jP1(s)� P2(s)j2 ds (27)

but there is (apparently) no good �rst-principles reason to use this form. In the next section we

discuss the measure of distance which leads to the maximally informative choice of �n+1
v .

3.3.2 Maximally informative inference

The measure of distance which leads to the �n+1 providing the most information about the surface

distribution is the maximally informative choice for the statistic �n+1. The condition for being

maximally informative, see [5], is that the Kullback-Leibler distance D(P1(s); P2(s)) is minimized,

where

D(P1(s); P2(s)) =
Z
P1(s) log

 
P1(s)

P2(s)

!
ds (28)

and where the P 's above are posterior distributions of �eld, that is

P1(s) = P̂ (s j xn+1;�
n
v ; �; �) (29)

P2(s) = P̂ (s j �n+1
v ; �): (30)

That is,

Find the �n+1 such that

@�n+1
v

Z
P̂ (s j �n

v ;xn+1; �; �) log

 
P̂ (s j �n

v ;xn+1; �; �)

P̂ (s j �n+1
v ; �)

!
ds = 0

(31)
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while at the �n+1
v satisfying the derivative condition above

det

"
@2
�n+1
v

Z
P̂ (s j �n

v ;xn+1; �; �) log

 
P̂ (s j �n

v ;xn+1; �; �)

P̂ (s j �n+1
v ; �)

!
ds

#
< 0

(32)

i.e., the hessian is negative de�nite and the extremum is a local maximum. If possible, choose

the global maximum. Note that the Kullback-Leibler distance is asymmetric. Generally, it is

highly relevant which distribution contains the prior information and which distribution is being

updated. Maximum entropy techniques reverse the roles of P1 and P2 which appear here. For a

detailed explanation see [5].

In the following section are some observations on the approach taken to maximally informative

surface inference. Section 5 then briey makes explicit the speci�c distribution forms which are

assumed. The Generalized Kalman Filter update equations for the surface inference example

which follow from this approach are then presented in section 6, completing the derivation of the

maximally informative approach.

4 Observations on the update scheme

Note the following:

� The updating scheme described here is a maximally informative update scheme and is related

to the Kalman �lter. The Kalman �lter is a minimum variance �ltering scheme applicable

in the case of �xed representation dimension. The crucial step which has been taken in the

current work is the step of allowing the representation scheme to be adaptable. We have

adopted the label \Generalized Kalman Filter" (GKF) to describe the idea represented here.

The GKF equations are presented in section 6.

� To this point we have only optimized over �v. It is clear that we may also vary the number of

vertices jvj of the representation, allowing optimization over the number of vertices. Varying

the number of vertices of the representation is absolutely necessary if surface knowledge at

scales smaller than the current set of vertices represents is to ever accumulate. In section 6 the

GKF update equations are derived assuming that the number of vertices in the representation

basis vertex set is arbitrary at each update.

� Beyond allowing the number of vertices to vary, the positions of the vertices may be allowed

to vary. In section 6 the GKF update equations are derived assuming that the representation

basis vertex set positions are arbitrary.
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� Detecting when and where new vertices are necessary is a matter of observing directly in

equations 28 or 31 when new data produces a lower surface uncertainty over a region, and

when having smaller uncertainty at neighboring vertices is not suÆcient to represent this

lower uncertainty over the region.

� The vertex representation for the surface knowledge is convenient, but not necessary. For

example it is possible to extend a height �eld to a height-and-reectance �eld or \arbitrary

dimension �eld", where the reectance lies within a many-dimensional space. Reasonable

structures for the covariance matrix allow di�ering correlations between reectance values

and between height values. It will be seen in in section 6 that the GKF update equations

are easily used in the \arbitrary dimension �eld" context.

� In its most abstract form, instead of having a \�eld", there is simply a set of objects, while

for each \object" there is an associated vector of properties, where some of the components of

the property vector may be considered a location in space. In this fairly abstracted setting,

the collection of objects has an associated joint probability distribution which describes the

probability distribution over con�gurations of objects. It will be seen in in section 6 that

the GKF update equations are easily understood in the \object" context.

� Equation 31 which de�nes the quantity to be minimized is where a penalty term which

indicates how many bits in hardware is available in trade for each bit of information learned

from data. For example, one might penalize the KL distance by 1=10th the number of bytes it

takes to represent the new information gained by extending the number of points represented.

The exact form of the information learned about the surface distribution contained in the

KR distribution is found in section 8, where the dimensionality of the representation enters

directly, and where bits-used penalty-terms may be introduced.

� The previous note points out how a minimum description length method fails for this prob-

lem. It is certainly the case that that our update scheme may require much more memory

(in bits) to represent the information learned than the information learned (in bits). At

some point, if information at small enough scales is desired, MDL would truncate and stop.

Clearly, applying MDL would then be a disaster. On the other hand, what seems to work

here may be called an adaptive MDL approach.

� Note that a method like maximum entropy is entirely de�cient for providing distributions of

surfaces: given the constraints implied by the knowledge of the distribution of the heights

at discrete points: maximum entropy ignores correlations between nearby surface points no

matter how close, an entirely ludicrous situation. On the other hand, a method like relative
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maximum entropy, based on inverting the roles of the distributions in equation 28, claims to

provide the least informative inference relative to the prior information, a heuristic, diÆcult

to justify, at best. Further, such approaches are typically based on likelihood distributions,

rather than the posteriors that appear in equation 28.

5 Surface Distribution Forms

5.1 Prior

For simplicity of mathematical presentation only, the prior in our surface inference example is

taken multinormal over continuous, smooth height �elds. One particular, conveniently chosen,

representation of the prior distribution is constructed in appendix 12.1. This prior may be written

in the shorthand

P (s j �) = N(�s;�s)(s) (33)

where � = (�s;�s) is the parameter vector. The density of the height �eld determined by the

prior

P (hv j �) =
Z
P (hv j s)P (s j �) ds (34)

=
Z
Æ(hv � h(s; v))P (s j �) ds (35)

= N(�v;�v)(hv) (36)

where

�v = Avs�s

�v = Avs�sA
T
vs (37)

and the projection onto the height �eld is given by Avs. Note that equation 37 implies that the

surface density covariance is represented di�erently than a discrete surface distribution covariance

matrix. Speci�cally, the projection matrix Avs is a delta-function-like operator, and �s is a contin-

uous function of two positions. In appendix 12.1 we show that the surface density has a compact

continuous power spectrum representation, and there give the explicit form of that representation.

Thus the notation of equation 37 must be considered a shorthand for the underlying continuous

construct.

5.2 Likelihood

When measurement is modelled as a linear process corrupted by gaussian noise we have

x = Ms + �
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� � N(0;��): (38)

or

P (x j s; �) = N(Ms;��)(x) (39)

where � = (M;��) is the parameter vector.

6 The Generalized Kalman Filter equations.

In this section a concise derivation of the Generalized Kalman Filter update equations specialized

to the discrete basis multinormal KR distribution of equation 22 are derived. The updated KR

need not have the same basis dimension nor position as the previous KR basis, solving the problem

of how to allow updates from one representation to the next, same, �ner or coarser, representation.

Proceeding, the KR distribution in terms of the parameterized height �eld of equation 22 is

P̂ (s j �n
v ; �) =

Z
P (s j hv; �) P̂ (hv j �n

v ) dhv (40)

The distribution of surface given the height �eld from equation 9 is

P (s j hv�) =
P (hv j s)P (s j �)

P (hv j �)
=

Æ(hv � h(s; v))P (s j �)
P (hv j �) (41)

Simplify the integral of the KR distribution to �nd

P̂ (s j �n
v ; �) =

Z P (hv j s)P (s j �)
P (hv j �) P̂ (hv j �n

v ) dhv

= P (s j �)
Z
Æ(hv � h(s; v))

P̂ (hv j �n
v )

P (hv j �) dhv

= P (s j �) P̂ (h(s; v) j �
n
v )

P (h(s; v) j �) (42)

Note how the full surface distribution is simply modi�ed by the ratio

P̂ (h(s; v) j �n
v )

P (h(s; v) j �) (43)

From equation 23 the Bayesian update of the KR distribution is

P̂ (s j xn+1;�
n
v ; �; �) =

P (xn+1 j s; �) P̂ (s j �n
v ; �)R

P (xn+1 j s; �) P̂ (s j �n
v ; �) ds

=
P (xn+1 j s; �) P̂ (s j �n

v ; �)

P̂ (xn+1 j �n
v ; �; �)

(44)
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Rewriting the updated distribution using equation 42 yields

P̂ (s j xn+1;�
n
v ; �; �) / P (xn+1 j s; �)P (s j �)� P̂ (h(s; v) j �n

v )

P (h(s; v) j �)
(45)

For maximally informative inference of the new KR we minimize, from equation 28,

D(P1(s); P2(s)) = D(P̂ (s j xn+1;�
n
v ; �; �); P̂ (s j �n+1

v ; �))

=
Z
P̂ (s j xn+1;�

n
v ; �; �) log

 
P̂ (s j xn+1;�

n
v ; �; �)

P̂ (s j �n+1
v ; �)

!
ds

(46)

Note that it is not assumed here that v and v have the same dimension. Expanding the probability

distributions within the logarithm appearing above yields

D(P1(s); P2(s)) =
Z
P̂ (s j xn+1;�

n
v ; �; �)

� [�log (P (h(s; v) j �))
+log (P (h(s; v) j �))
+log (P (xn+1 j s; �))
�log

�
P̂ (xn+1 j �n

v ; �; �)
�

+log
�
P̂ (h(s; v) j �n

v )
�

�log
�
P̂ (h(s; v) j �n+1

v )
� i

ds (47)

Each term has the form of an information (or uncertainty). Together the six terms paint a

descriptive picture of how information is acquired by the maximally informative update when

taken as three groups of two terms: Denote by \new KR" the two terms with v and �n+1
v , by

\previous KR" the two terms with v and �n
v and no data, and by \new data" the two terms with

data dependency. Now, noting the signs on these quantities, because D is positive, the whole

point of choosing a good �n+1 approximation by minimizing D is that

Expected information in new KR '
(Expected information in previous KR

+Expected information in new data) (48)

or in very rough terms we may see the update as capturing the sum-total of the available knowledge

Total knowledge = Prior knowledge+ New knowledge from data (49)
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Because only terms depending upon the update parameters v and �n+1
v are needed to perform

the minimization, we drop the other terms at this point, and after making the multinormal

substitutions for the distributions in the above we have

�D(P1(s); P2(s)) =
Z
P̂ (hv j xn+1;�

n
v ; �; �) log (N(�v;�v)(hv)) dhv

�
Z
P̂ (hv j xn+1;�

n
v ; �; �) log

�
N(�n+1

v ;�n+1
v )(hv)

�
dhv

(50)

To simplify the P̂ 's appearing in equation 50, the distribution of surface given old knowledge and

new data, marginalized to the height �eld v, is useful, as is seen by observing equations 47 and 50.

Thus, consider

P̂ (s j xn+1;�
n
v ; �; �) / N(M(�)s;�n+1

� )(xn+1)N(�s;�s)(s)

� N(�n
v ;�

n
v )(h(s; v))

N(�v;�v)(h(s; v))
(51)

found by making substitutions into 45 for the assumed distributions. Since it is not necessarily the

case that vi 2 fvjg or that vi 2 fvjg. proceed by marginalizing to the union of the components of

v and v, which we denote v [ v, and then to the v components. Let Av[v;s denote the projection

from vs to v [ v, Av;v[v denote the projection from v [ v to v, and Av;v denote the projection

from v to v. In performing the two projections (from vs to v [ v, and then from v [ v to v) in

order we �nd (not necessarily in most simple form), using results of appendices 12.2{12.5, that

Z
P̂ (s j xn+1;�

n
v ; �; �) ds n v = N(�R;�R)(hv) (52)

where

�R
v = �R(�

�1
Q �v

Q + (�n
v )
�1�n

v
� ��1

v �v)

��1
R = ��1

Q + (�n
v )
�1 � ��1

v (53)

and where

�
Q
v = Av;v[vAv[v;s�

P
s

��1
Q = Av;v[vAv[v;s�

�1
P AT

v[v;sA
T
v;v[v

(54)

�P
s = �P (�

�1
s �s +MT��1

� xn+1)

��1
P = ��1

s +MT��1
� M
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(55)

�n

v
= Av;v�

n

v

(�n
v )
�1 = Av;v(�

n
v )
�1AT

v;v

(56)

�v = Av;v�v

��1
v = Av;v�

�1
v AT

v;v

(57)

�v = Av;s�s

��1
v = Av;s�

�1
s AT

v;s

(58)

Using the results of appendix 12.6, the quantities of equation 53 above correspond to the values

of the mean and standard deviation parameters of the new KR, found at the minimum Kullback

Leibler distance, i.e. the minimization is immediately apparent from those results. Thus:

�n+1
v = (�n+1

v ;�n+1
v )

�n+1
v = �R

v

�n+1
v = �R

v (59)

Equations 53 are the Generalized Kalman Filter (GKF) update equations for the surface inference

example, yet are quite a bit more general (the necessary change of variables needed when the

forward projection is nonlinear appears in appendix 12.10). Having these update equations allows

one to consider updating a representation of any dimension relative to the original representation.

Thus. knowledge may be represented in �ner detail, corresponding to the old representation being

contained in the new, knowledge may be represented in the same detail, corresponding to the case

when the new representation is the same as the old representation, or knowledge may be tossed,

corresponding to the case when the new representation does not contain the old representation.

The maximally informative inference approach and its result of the Kullback Leibler distance on

conditional posteriors led directly here to deriving the GKF and the solution of the problem of

storing knowledge at scales adaptive to the actual needs of the data driving the update. The

standard KF is discussed in [1].

7 Specializing the GKF

When the surface of interest is itself a discrete height �eld, and the KR representation basis never

changes in dimension nor position from that height �eld's basis, then all projections appearing
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in equations 53 and following are identities, and the update equations simplify to the standard

Kalman �lter equations, in e�ect equations 55 only, given suitable identi�cation of the variables.

8 Information learned

Once a new set of parameters has been chosen, and for the purpose of evaluating the new update

in the context of other possible updates at di�erent scales, using di�erent representational bases,

it is useful to have the quantity of information about the surface distribution that is contained in

the KR at the maximally informative update. Using the results of appendix 12.6 in equation 50

we have this information, up to a constant, is given by

IR = C(xn+1;�
n
v ; �; �)

+
1

2

�
Tr

h
(�R + U(�R � �v))
 ��1

v

i
+ log(j�vj)

�

� 1

2

�
Tr

h
�R 
 ��1

R

i
+ log(j�Rj)

�
(60)

Note that the d's (representation basis dimensions) from the dlog(2�)'s of equation 94 have can-

celled. However the d's remain hidden within the terms as matrix dimensions. When considering

optimizing learned inormation against storage resources, one must weigh a separate cost in bits

for the memory used against the bits learned, the expression above. Note also, interestingly the

expression above contains a BIC-like log(d) dependence term.

9 Search for update parameters

Now that we know what the update equations for the updating of the KR distribution look like, it

is worthwhile considering how an updating scheme might be implemented to acquire information

at the appropriate scale. First, we dismiss the notion that we will ever be using the continuous

height �eld vs (the support of s) at any time. None of the update equations force that to happen!

Second, since we have concluded that computationally vs is a discrete set, and since there will

always be pathological cases where the surface is much rougher than we care to represent, we

acknowledge that fact and proceed by presenting a useful algorithm which allows the updating of

the KR while maintaining the ability to explore a large range of scales. The following multigrid-

style algorithm provides the general avor:

� Choose vs denser by several orders of scale than the current representation, and using other

criteria associated with the knowledge of the data acquisition system (see below).

� Choose v at regular scales intermediate between vs and the old KR on v, compute the

updates on all v chosen at these scales.
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� Compute the information learned at each scale.

� Plot the information learned as a function of increasing density (decreasing scale).

� Choose, based on exploration of the plot, and costs associated with storing the learned

information, whether to explore other octaves of scale. If Choose to explore, repeat above

procedure.

� If choice is to pick an informationally and storage attractive KR, do this and update the

representation accordingly.

In the surface reconstruction problem data often comes in the form of images. The images may

come from devices with vastly di�erent resolutions, and the known parameters of pixel size, point

spread function and geometry determine the appropriate reconstruction scale. Finally adapting

the surface to resolve at sub-pixel scales requires a memory-aggressive approach which extends

the exploration farther out on the learning curve towards smaller, denser representation scales.

10 Conclusion

Field inference has been generalized from the typical discrete �xed-basis setting to a continuous-

basis setting. The problem of surface inference was solved in the context of continuous �eld

inference. Using the approach of acquiring the maximally informative KR distribution, the GKF

equations were found. The GKF allows the updated KR parameters to be found at any scale

and/or \positions" (abstractly, basis components). The approach allows the learning of informa-

tion at the relevant scales desired. It provides an information-theoretic justi�cation for location-

dependent adaptive multi-grid inference. It also e�ectively provides similar justi�cation for a

scale-adaptive MDL method. This is apparently the �rst time that the maximally informative

inference of continuous-basis objects and the multigrid approach have been rigorously justi�ed.
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12 Appendices

12.1 Construction of a 2D surface prior

In this appendix we �rst introduce the reader to the fourier representation of a gaussian process,

then using the notions developed �nd the representation for a 2D gaussian process over the plane,

where the correlations of the process at points x and y are proportional to exp(�k jx� yj), k > 0,

a simple translation-invariant choice for the form of the correlation structure of the probability

density of surfaces having the plane as support. The utility for the GKF of having this process

is that it serves as a simply computed algorithmic representation of the prior for surfaces having

the plane as support.

12.1.1 The discrete gaussian process

Consider f(n; c), n 2 ZN = f�N; : : : ;�1; 0; 1; : : : ; Ng, a discrete process with expression as the

fourier expansion

f(n; c) =
NX

k=�N

cke
ikn (61)

where the coeÆcients c = (ck) are constrained by f 2 R so that ck = c��k, and the n and k

range over ZN . Let the coeÆcients be random variables: ck = xk + iyk with xk � N(0; �k) and

yk � N(0; �k) both gaussian distributed random variables with mean 0 and standard deviation

�k. Now, dropping the k's, the joint density of (x; y) is given by

Px;y(x; y) =
e�x

2=2�2

p
2��

e�y
2=2�2

p
2��

: (62)

From this the joint density of (r; �) where r =
p
x2 + y2 and � = arctan(y=x) is given by

Pr;�(r; �) =
re�r

2=2�2

2��2
: (63)

The density of r is given directly by integrating over �

Pr(r) =
re�r

2=2�2

�2
; (64)

while the density of � is given directly by integrating over r

P�(�) =
1

2�
: (65)
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Making a change of variables, the density of cc� = x2 + y2 = r2 is given by the exponential

distribution

Pcc�(u) =
e�u=2�

2

2�2
(66)

The distribution of ck + c�k = 2Re[ck] = 2xk, k > 0 is of interest because the process is real.

Pc+c�(u) =
e�u

2=2(2�)2

p
2�2�

(67)

which is just a gaussian with zero mean but twice the variance of the components x and y of

c. Note that the actual coeÆcients in equation 61 cke
ikn + c�ke

�ikn = 2Re[cke
ikn] also have the

distribution of equation 67 since the phase of ck is uniformly distributed in [0; 2�].

Now, given a set of integers � � ZN we may ask for the density of the sampled values of the

process f at � = (n1; n2; : : : ; nm)

f(�) = (f(n1); f(n2); : : : ; f(nm)); (68)

where m = j�j ; ni 2 ZN ; i = 1; : : : ; m. De�ne

f(�; c) = (f(n1; c); f(n2; c); : : : ; f(nm; c)) (69)

Then the probability density function which describes the sampled values is

P (f(�)) =
Z
Æ(f(�)� f(�; c))P (c) dc (70)

where

P (c) = P (c0)
NY
k=1

P (ck + c�k) (71)

Note that that the density of P (f(�)) is multivariate gaussian since the representation of f(�; c) as

a fourier series shows that it is the sum of gaussian random vectors with components 2Re[cke
ikn].

The covariances of the process are found as

�m;n = E[f(m)f(n)] = E[f(m)f �(n)]

= E

2
4 NX
k;l=�N

ckc
�
l e

i(km�ln)

3
5

=
NX

k=�N

E[ckc
�
k]e

ik(m�n)

= F [E[ckc
�
k]](m� n) (72)
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where we used the fact that the coeÆcients of di�erent frequency are uncorrelated for k 6= l, i.e

E[ckc
�
l ] = 0 for k 6= l. De�ne the power spectrum R(k) as

R(k) = E[ckc
�
k] (73)

Then we have that the covariance is given by the fourier transform of the power spectrum,

�m;n = E[f(m)f(n)] = F [R](m� n) = �m�n (74)

where we have acknowledged that the covariance structure is dependent only upon the di�erence

m�n. From this we see that the inverse fourier transform of the covariance is the power spectrum,

F�1 [�u] (k) = R(k) (75)

Finally, note that the density of ckc
�
k given by equation 66 allows us to infer the parameters �k

which are the standard deviations of the gaussian processes xk and yk underlying the coeÆcients

ck, since from equation 66

E[ckc
�
k] =

Z
u
e�u=2�

2
k

2�2k
du = 2�2k (76)

In the next section the basis for gaussian processes developed here is extended to the continuous

2D case to compute the power spectrum of a process speci�ed by a continuous-basis covariance

structure.

12.1.2 The continuous-basis 2D process

Similar to the development in the last section, in two dimensions, given the continuous-basis

covariance �x = exp(�k jxj), k > 0., the power spectrum is found as the inverse fourier transform

of the covariance, i.e.

R(u = (u; v)) = F�1
2 [�x](u; v)

=
Z Z

e�kj(x;y)je�iuxe�ivy dx dy (77)

Make the change of variables (x; y)! (r; �) so that x = rcos(�), y = rsin(�), then

R(u; v) =
Z 1

0

Z 2�

0
e�kre�ir(ucos(�)+vsin(�)) r dr d� (78)

For simplicity, make the further change of variables (u; v) ! (s; �) so that u = scos(�), v =

ssin(�), so that

R(s; �) =
Z 1

0

Z 2�

0
e�kre�irs(cos(�)cos(�)+sin(�)sin(�)) r dr d�
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=
Z 1

0

Z 2�

0
e�kre�irscos(���) r dr d�

=
Z 1

0
re�kr

Z 2�

0
e�irscos(���) d� dr

R(s) = 2�
Z 1

0
re�krJ0(rs) dr (79)

Finally,

R(u) =
2�k

(juj2 + k2)3=2
(80)

Note that we have neglected the proportionality constant 1=2� in the fourier transform, amounting

to normalizing the delta function to 2�, and have scaled u to units of cycles per 2�. Note also that

both the covariance of the process and the power spectrum scale with the same proportionality

constant. Harmonic analysis is discussed in [3]

12.2 Multinormal density MGF

The moment generating function for a probability distribution f is de�ned as the functional

M [f ](�) = Ef [e
Tr[U(�;x)]] (81)

where U(y; z) is de�ned such that U = [Uij] and Uij(y; z) := yizj, from which holds the property

@kM [f ](�)

@�i1 : : : �ik
j�=0

= Ef [xi1 : : : xik ] (82)

i.e the moments are found as derivatives of the MGF with respect to the parameter � at � = 0.

Take the multinormal density function for x

P (x j �) = N(�)(x)

= N(�;�)(x)

=
1

(2�)d=2 j � j1=2 exp(�
1

2
Tr[U(x� �)
 ��1]) (83)

where U(y) is de�ned such that Uij(y) := Uij(y;y) and d = Dim(x). The MGF of N(�)(x) is

then given by

M [N(�)(x)](�) = E[eTr[U(�;x)] j �]
=
Z 1

(2�)d=2 j � j1=2 exp(�
1

2
Tr[U(x� �)
 ��1] + Tr[U(�;x)]) dx

(84)
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Minus twice the exponent of the integral above may be written as

Tr[U(x� �)
 ��1]� 2Tr[U(�;x)] = Tr[U(x� (�� ��))
 ��1]

+Tr[U(�)
 ��1]

�Tr[U(�� ��)
 ��1]

= Tr[U(x� (�� ��))
 ��1]

�Tr[U(�)
 �]

�2Tr[U(�;�)] (85)

from which the moment generating function is immediately found as

M [N(�)(x)](�) = exp(Tr[U(�;�)] +
1

2
Tr[U(�)
 �] ) (86)

From the above we have

E[xi j �] = �i

E[(xi � �i)(xj � �j) j �] = �ij (87)

which agrees with the calculation of appendix 12.2. Two things to note: 1. The inverse of � is

assumed to exist. 2. All moments are determined by simple products and sums of the parameters

(�;�).

12.3 Multinormal linear change of variables

Letting y = Ax be the change of variables, where P (x j �) = N(�)(x), the MGF of the density

P (y j �) is found from the MGF of the density for P (x j �) in a straightforward manner as

M [P (y j �)](�) = E[eTr[U(�;y)] j �]
= E[eTr[U(�;Ax)] j �] (88)

= E[eTr[U(AT�;x)] j �]
= exp(Tr[U(�; AT�)] +

1

2
Tr[U(AT�)
 �])

= exp(Tr[U(A�;�)] +
1

2
Tr[U(�)
 (A�AT )])

(89)

Note that the dropped subscripts x and x of the � and � are easily determined by the context,

and that the density used to take the expectation naturally changed in equation 88 from P (y j �)
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to P (x j �) without confusion. With this result and referring to equation 86 and preceding we

�nd that the density for y is multinormal with

�y = A�x

�y = A�xA
T (90)

Note that everywhere the condition of A was neither mentioned nor assumed, thus A may be a

rectangular matrix or otherwise not of full rank.

12.4 Multinormal projections

Another useful operation is that of projection onto a subset of the components of the argument

of the multinormal distribution. Projections may be trivially represented as a linear operation,

where the \projection matrix" is typically a rectangular matrix having the form of a unique

(single) element of value 1 in each row and column, zeroes elsewhere. Finding the distribution of

the projected variables is equivalent to the operation of marginalizing over the components not in

the projection. Let A be the projection matrix selecting a subset of the variables of x as y = Ax.

Then, using the result of section 12.3, we immediately �nd integrals of the formZ
N(�;�)(x) dx n y = N(A�; A�AT )(y) (91)

Both vector A� and the matrix A�AT are now just appropriately rearranged pieces of the original

vector � and matrix �. Speci�cally, if yk = xik then [A�AT ]pq = �ipjq .

12.5 Multinormal multiplication

One operation which frequently occurs in Bayesian inference is that of taking the product of

two multinormal distributions of the same variable and normalizing that product to �nd a new

distribution. Finding the new � = (�;�) amounts to completing the square, but it is useful to

state the result, and we do this here. Let �1 = (�1;�1) and �1 = (�1;�1) be the parameters of

the multinormal distributions in the product. Then

� = �(��1
1 �1 + ��1

2 �2)

� = (��1
1 + ��1

1 )�1 (92)

12.6 Expected uncertainty in multinormals

It is useful to know the expected uncertainty of one gaussian distribution in the context of another.

Consider the quantity

E[�log(P (�2)(x)) j �1] = �
Z
N(�1;�1)(x) log (N(�2;�2)(x)) dx (93)
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which occurs in similar form in the development of the Generalized Kalman Filter (section 6) and

represents the expected uncertainty, or entropy, of the surface representation in the context of

the updated surface distribution. The value of this integral is found straightforwardly using the

results mentioned in appendix 12.2 as

E[�log(N(�2;�2)(x)) j �1] =
1

2
E
h
Tr[U(x� �2)
 ��1

2 ]
i

+
d

2
log(2�) +

1

2
log(j�2j)

=
1

2
Tr

h
(�1 + U(�1 � �2))
 ��1

2

i

+
d

2
log(2�) +

1

2
log(j�2j)

(94)

12.7 Maximizing the expected information

Varying �2, the minimum value of the uncertainty above occurs when �2 = �1. That this is true

for the � component of �2 is immediate from the positive de�nite quadratic nature of the �rst

term. For the � component the following fact following from the properties of determinants and

matrix inverses facilitates the result:

@ j�j
@�kl

= (�1)k+lCofkl(�)j�j = ��1
kl (95)

12.8 Notes on matrix inverses and submatrices

Given the invertible matrix V , composed in the following manner of submatrices V11, V12, V21, V22,

A =

"
V11 V12
V21 V22

#
(96)

and its inverse

A�1 =

"
V̂11 V̂12
V̂21 V̂22

#
(97)

then it is immediate that the following relationships hold among the submatrices

"
I11 N12

N21 I22

#
=

"
V11V̂11 + V12V̂21 V11V̂12 + V12V̂22
V21V̂11 + V22V̂21 V21V̂12 + V22V̂22

#
(98)

where I and N represent the identity and zero matrices respectively. Any quadratic operator

xTQx may be decomposed using projection matrices A and A where these are diagonal matrices
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with one and zero entries only, and where

A+ A = I (99)

in the following manner

xTQx = xT (A+ A)Q(A+ A)Tx

= xT
AQAAxA + xT

AQAAxA + xT
A
QAAxA + xT

A
QAAxA (100)

Now, assume Q is symmetric and that both it and QAA and QAA are invertible, and rewrite this

form as the sum of two terms as follows

xTQx = (xA ��)TQAA(xA � �) + C(xA)

= xT
AQAAxA � xT

AQAAxA � xT
A
QAAxA +�TQAA�+ C(xA)

(101)

where � = (QAA)
�1QAAxA. Thus

C(xA) = xT
A

�
QAA �QAA(QAA)

�1QAA

�
xA (102)

Applying the identities of equation 98

QAAQ̂AA +QAAQ̂AA = NAA (103)

followed by

QAAQ̂AA +QAAQ̂AA = IAA (104)

�nd that

QAA �QAA(QAA)
�1QAA = (Q̂AA)

�1 (105)

so that

C(xA) = xT
A
(Q̂AA)

�1xA (106)

which immediately provides an alternate method for marginalizing gaussian distributions.

12.9 Alternate inverse forms

In the GKF update equations expressions for updating inverse matrices in terms of the sum of

other inverse matrices occur. Because one of the summand matrices may not be well-conditioned,

it is of interest to �nd an expression for the updated matrix in terms of the other matrices, which
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explicitly is not a function of the inverse matrices. Thus, let P , Q, R be invertible matrices such

that

P�1 = Q�1 +R�1 (107)

Then we �nd

P = Q�Q(Q +R)�1Q (108)

by the following direct substitution

PP�1 = (Q�Q(Q +R)�1Q)(Q�1 +R�1)

= I �Q
h
(Q+R)�1(I +QR�1)� R�1

i
= I (109)

12.10 Nonlinear forward projection

In the nonlinear forward projection case the projection is given by f(s), where f(�) is a nonlinear
function of s rather then the linear form Ms. Because the derivative of the forward projection is

often a straightforward object to compute, expand f(s) about the mean of the old surface, �s

x = f(�s) +
@f

@s
j�

s
(s� �s) + � (110)

Letting M = @f
@s j�s

we have

P (x j s; �) = N((f(�s)�M�s) +Ms;��)(x)

= N(Ms;��)(x� (f(�
s
)�M�

s
))

(111)

so that the appropriate changes to be made to the GKF update equations are simply

x! x� (f(�
s
)�M�

s
)

M ! @f
@s j�s

(112)

while everything else otherwise remains the same.



GKF Update Loop Equation

Bayes update

MaxInfo Approx.

The elements going into  are the prior, restricted to some knowledge  about the
field, .  (In the main text example,  is the set of known surface height field values.)
and the Knowledge Representation (KR) distribution is , which is the learned
knowledge about the specifics of the surface at the 'th iteration of the GKF.

These form the approximate posterior  given by the integral over  of the product of
the KR distribution and the prior distribution given  known, that is

 (1)

At update , the new data and the approximate posterior from iteration n are incorporated 
using the likelihood  and Bayes' theorem to produce the data-dependent posterior 
written . Then, the new KR that caputres an approximation to this exact poste-
rior using (1) above with  via Maximally informative statistical inference completes 
the GKF loop.

Figure 1 - Generalized Kalman Filter Update Loop

xn 1+ P s Θn xn 1+,( )

P s Θn( )

Θn Θn 1+→

P s Θn( ) H
P s H( ) H

P H Θn( )
n

P s Θn( ) H
H

P s Θn( ) P s H( ) P H Θn( ) dH∫= s

n 1+
P xn 1+ s( )

P s Θn xn 1+,( )
n n 1+→
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