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Abstract: A Bayesian measure of evidence for precise hypotheses is presented. The inten-

tion is to give a Bayesian alternative to significance tests or, equivalently, to p-values. In

fact, a set is defined in the parameter space and the posterior probability, its credibility, is

evaluated. This set is the “Highest Posterior Density Region” that is “tangent” to the set that

defines the null hypothesis. Our measure of evidence is the complement of the credibility of

the “tangent” region.

Keywords: Bayes factor, numerical integration, global optimization, p-value, posterior den-

sity.

1. Introduction

The objective of this paper is to provide a coherent Bayesian measure of evidence for precise null

hypotheses. Significance tests [1] are regarded as procedures for measuring the consistency of data

with a null hypothesis by the calculation of a p-value (tail area under the null hypothesis). [2] and [3]

consider the p-value as a measure of evidence of the null hypothesis and present alternative Bayesian

measures of evidence, the Bayes Factor and the posterior probability of the null hypothesis. As pointed

out in [1], the first difficult to define the p-value is the way the sample space is ordered under the null

hypothesis. [4] suggested a p-value that always regards the alternative hypothesis. To each of these
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measures of evidence one could find a great number of counter arguments. The most important argu-

ment against Bayesian test for precise hypothesis is presented by [5]. Arguments against the classical

p-value are full in the literature. The book by [6] and its review by [7] present interesting and relevant

arguments to the statisticians start to thing about new methods of measuring evidence. In a more philo-

sophical terms, [8] discuss, in a great detail, the concept of evidence. The method we suggest in the

present paper has simple arguments and a geometric interpretation. It can be easily implemented using

modern numerical optimization and integration techniques. To illustrate the method we apply it to

standard statistical problems with multinomial distributions. Also, to show its broad spectrum, we con-

sider the case of comparing two gamma distributions, which has no simple solution with standard pro-

cedures. It is not a situation that appears in regular textbooks. These examples will make clear how the

method should be used in most situations. The method is “Full” Bayesian and consists in the analysis

of credible sets. By Full we mean that one needs only to use the posterior distribution without the need

for any adhockery, a term used by [8].

2. The Evidence Calculus

Consider the random variable D that, when observed, produces the data d. The statistical space is
represented by the triplet ),,( Θ∆Ξ  where Ξ  is the sample space, the set of possible values of d, ∆  is

the family of measurable subsets of Ξ  and Θ  is the parameter space. We define now a prior model
),,( dB πΘ , which is a probability space defined over Θ . Note that this model has to be consistent, so

that )|Pr( θA  turns out to be well defined. As usual after observing data d, we obtain the posterior

probability model ),,( dB πΘ , where dπ  is the conditional probability measure on B  given the ob-

served sample point, d . In this paper we restrict ourselves to the case where the function dπ  has a

probability density function.
To define our procedure we should concentrate only on the posterior probability space ),,( dB πΘ .

First we will define ϕT  as the subset of the parameter space where the posterior density is greater than

ϕ .

{ }ϕθθϕ >Θ∈= )(| fT

The credibility of ϕT  is its posterior probability,

θθθθκ ϕ
ϕ

∫∫ Θ
== ddfddf

T
)|()|(

where )()( xfxf =ϕ  if ϕ>)(xf  and zero otherwise.

Now, we define f* as the maximum of the posterior density over the null hypothesis, attained at the
argument *θ ,

*)(*),(maxarg*
0

θθθ
θ

fff =∈
Θ∈

and define ** fTT =  as the set “tangent” to the null hypothesis, H, whose credibility is *κ . Figures 1

and 2 show the null hypothesis and the contour of set T* for Examples 2 and 3 of Section 4.
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The measure of evidence we propose in this article is the complement of the probability of the set

T*. That is, the evidence of the null hypothesis is
*)(1or    *1)( THEv dπκ −−= .

If the probability of the set T* is “large”, it means that the null set is in a region of low probability

and the evidence in the data is against the null hypothesis. On the other hand, if the probability of T* is

“small”, then the null set is in a region of high probability and the evidence in the data is in favor of the

null hypothesis.

Although the definition of evidence above is quite general, it was created with the objective of

testing precise hypotheses. That is, a null hypothesis for which the dimension is smaller than that of the
parameter space, i.e. )dim()dim( 0 Θ<Θ .

3. Numerical Computation

In this paper the parameter space, Θ , is always a subset of Rn, and the hypothesis is defined as a

further restricted subset nR⊆Θ⊂Θ0 . Usually, 0Θ is defined by vector valued inequality and equal-

ity constraints:
{ }0)(0)(|0 =∧≤Θ∈=Θ θθθ hg .

Since we are working with precise hypotheses, we have at least one equality constraint, hence
)dim()dim( 0 Θ<Θ . Let )(θf  be the probability density function for the measure dπ , i.e.,

∫=
b

d dfb θθπ )()( .

The computation of the evidence measure defined in the last section is performed in two steps, a

numerical optimization step, and a numerical integration step. The numerical optimization step con-
sists of finding an argument *θ  that maximizes the posterior density )(θf under the null hypothesis.

The numerical integration step consists of integrating the posterior density over the region where it is
greater than *)(θf . That is,

• Numerical Optimization step:
*)(*),(maxarg*

0

θϕθθ
θ

fff ==∈
Θ∈

• Numerical Integration step:

θθκ ϕ∫Θ
= ddf )|(*

where )()( xfxf =ϕ  if ϕ>)(xf  and zero otherwise.

Efficient computational algorithms are available for local and global optimization as well as for

numerical integration in [9], [10], [11], [12], [13], and [14]. Computer codes for several such algo-

rithms can be found at software libraries as NAG and ACM, or at internet sites as www.ornl.org.

We notice that the method used to obtain T* and to calculate *κ  can be used under general condi-

tions. Our purpose, however, is to discuss precise hypothesis testing, under absolute continuity of the
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posterior probability model, the case for which most solutions presented in the literature are controver-

sial.

4. Examples

In the sequel we will discuss five examples with increasing computational difficulty. The first four

are about the Multinomial model. The first example presents the test for a specific success rate in the

standard binomial model, and the second is about the equality of two such rates. For these two exam-

ples the null hypotheses are linear restrictions of the original parameter spaces. The third example in-

troduces the Hardy-Weinberg equilibrium hypothesis in a trinomial distribution. In this case the hy-

pothesis is quadratic.

Forth example considers the test of independence of two events in a 22×  contingency table. In this

case the parameter space has dimension three, and the null hypothesis, which is not linear, defines a set

of dimension two.

Finally, the last example presents two parametric comparisons for two gamma distributions. Al-

though straightforward in our paradigm, it is not presented by standard statistical textbooks. We be-

lieve that, the reason for this gap in the literature is the non-existence of closed analytical forms for the

test. In order to be able to fairly compare our evidence measure with standard tests, like Chi-square tail

(pV), Bayes Factor (BF), and Posterior-Probability (PP), we always assume a uniform prior distribu-

tion. In these examples the likelihood has finite integral over the parameter space. Hence we have

posterior density functions that are proportional to the respective likelihood functions. In order to
achieve better numerical stability we optimize a function proportional to the log-likelihood, )(θL , and

make explicit use of its first and second derivatives (gradient and Jacobian).

For the 4 examples concerning multinomial distributions we present the following figures (Tables 1,

2, and 3):

• Our measure of evidence, Ev, for each d;

• the p-value, pV obtained by the 2χ  test; that is, the tail area;

• the Bayes Factor,
{ } { }

{ }( ) { }00

00

|PrPr1

|PrPr

Θ−ΘΘ−
ΘΘ

=
d

d
BF ; and

• the posterior probability of H,

{ } { } 11
0 )(1|Pr

−−+=Θ= BFdPP .

For the definition of the Bayes Factor and properties we refer to [8] and [15].

4.1. Success rate in standard binomial model

This is a standard example about testing that a proportion, θ , is equal to a specific value, p. Con-

sider the random variable, D being binomial with parameter θ  and sample size n. Here we consider
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20=n  trials, 5.0=p  and d is the observed success number. The parameter space is the unit interval

{ }10 ≤≤=Θ θ . The null hypothesis is defined as pH =θ: . For all possible values of d, Table 1 pres-

ents the figures to compare our measure with the standard ones. To compute the Bayes Factor, we con-
sider a priori { } { } 5.0PrPr === pH θ  and a uniform density for θ  under the “alternative” hypothesis,

pA ≠θ: . That is,

dnd pp
d

n
nBF −−








+= )1()1( .

Table 1. Standard binomial model.

d Ev PV BF PP

0 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00

3 0.00 0.00 0.02 0.02

4 0.01 0.01 0.10 0.09

5 0.02 0.03 0.31 0.24

6 0.06 0.07 0.78 0.44

7 0.16 0.18 1.55 0.61

8 0.35 0.37 2.52 0.72

9 0.64 0.65 3.36 0.77

10 1.00 1.00 3.70 0.79

4.2. Homogeneity test in 2× 2 contingency table

This model is useful in many applications, like comparison of two communities with relation to a

disease incidence, consumer behavior, electoral preference, etc. Two samples are taken from two bi-

nomial populations, and the objective is to test whether the success ratios are equal. Let x and y be the

number of successes of two independent binomial experiments of sample sizes m and n, respectively.

The posterior density for this multinomial model is
ymyxnxmnyxf −−∝ 4321),,,|( θθθθθ .

The parameter space and the null hypothesis set are:
{ }11|10 4321 =+∧=+≤≤=Θ θθθθθ

{ }310 | θθθ =Θ∈=Θ .
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The Bayes Factor considering a priori { } { } 5.0PrPr 31 === θθH  and uniform densities over 0θ
and 0θθ −  is given in the equation below. See [16] and [17] for details and discussion about proper-

ties.

1

)1()1(

++
++









+
+


















=
nm

nm

yx

nm

y

n

x

m

BF

Left side of Table 2 presents figures to compare Ev(d) with the other standard measures for
20== nm . Figure 1 presents H and T* for 10=x  and 4=y  with 20== mn .

Table 2. Tests of homogeneity and Hardy-Weinberg equilibrium.

Homogeneity Hardy-Weinberg
x y Ev pV BF PP x1 x3 Ev pV BF PP

5 0 0.05 0.02 0.25 0.20 1 2 0.01 0.00 0.01 0.01

5 1 0.18 0.08 0.87 0.46 1 3 0.01 0.01 0.04 0.04

5 2 0.43 0.21 1.70 0.63 1 4 0.04 0.02 0.11 0.10

5 3 0.71 0.43 2.47 0.71 1 5 0.09 0.04 0.25 0.20

5 4 0.93 0.71 2.95 0.75 1 6 0.18 0.08 0.46 0.32

5 5 1.00 1.00 3.05 0.75 1 7 0.31 0.15 0.77 0.44

5 6 0.94 0.72 2.80 0.74 1 8 0.48 0.26 1.16 0.54

5 7 0.77 0.49 2.31 0.70 1 9 0.66 0.39 1.59 0.61

5 8 0.58 0.31 1.75 0.64 1 10 0.83 0.57 2.00 0.67

5 9 0.39 0.18 1.21 0.55 1 11 0.95 0.77 2.34 0.70

5 10 0.24 0.10 0.77 0.43 1 12 1.00 0.99 2.55 0.72

10 0 0.00 0.00 0.00 0.00 1 13 0.96 0.78 2.57 0.72

10 1 0.00 0.00 0.02 0.02 1 14 0.84 0.55 2.39 0.71

10 2 0.01 0.01 0.07 0.06 1 15 0.66 0.33 2.05 0.67

10 3 0.05 0.02 0.19 0.16 1 16 0.47 0.16 1.58 0.61

10 4 0.12 0.05 0.41 0.29 1 17 0.27 0.05 1.06 0.51

10 5 0.24 0.10 0.77 0.43 1 18 0.12 0.00 0.58 0.37

10 6 0.41 0.20 1.23 0.55 5 0 0.02 0.01 0.05 0.05

10 7 0.61 0.34 1.74 0.63 5 1 0.09 0.04 0.25 0.20

10 8 0.81 0.53 2.21 0.69 5 2 0.29 0.14 0.60 0.38

10 9 0.95 0.75 2.54 0.72 5 3 0.61 0.34 1.00 0.50

10 10 1.00 1.00 2.66 0.73 5 4 0.89 0.65 1.29 0.56
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Continuation of the Table 2.

Homogeneity Hardy-Weinberg
x y Ev pV BF PP x1 x3 Ev pV BF PP

12 0 0.00 0.00 0.00 0.00 5 5 1.00 1.00 1.34 0.57

12 1 0.00 0.00 0.00 0.00 5 6 0.90 0.66 1.18 0.54

12 2 0.00 0.00 0.01 0.01 5 7 0.66 0.39 0.89 0.47

12 3 0.01 0.00 0.04 0.04 5 8 0.40 0.20 0.58 0.37

12 4 0.03 0.01 0.10 0.09 5 9 0.21 0.09 0.32 0.24

12 5 0.07 0.03 0.24 0.19 5 10 0.09 0.04 0.16 0.13

12 6 0.14 0.06 0.46 0.32 9 0 0.21 0.09 0.73 0.42

12 7 0.26 0.11 0.80 0.44 9 1 0.66 0.39 1.59 0.61

12 8 0.42 0.21 1.24 0.55 9 2 0.99 0.91 1.77 0.64

12 9 0.62 0.34 1.73 0.63 9 3 0.86 0.59 1.33 0.57

12 10 0.81 0.53 2.21 0.69 9 4 0.49 0.26 0.74 0.43

9 5 0.21 0.09 0.32 0.24

9 6 0.06 0.03 0.11 0.10

9 7 0.01 0.01 0.03 0.03

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

θ1

θ3 T*

← θ*

← Θ0

Figure 1. Homogeneity test with 10=x , 4=y  and 20== mn .
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4.3. Hardy-Weinberg equilibrium law

In this biological application there is a sample of n individuals, where x1 and x3 are the two ho-
mozigote sample counts and 312 xxnx −−=  is hetherozigote sample count. [ ]321 ,, θθθθ =  is the pa-

rameter vector. The posterior density for this trinomial model is
321

321)|( xxxxf θθθθ ∝

The parameter space and the null hypothesis set are:
{ }1|0 321 =++≥=Θ θθθθ

( )




 −=Θ∈=Θ

2
130 1| θθθ

The problem of testing the Hardy-Weinberg equilibrium law using the Bayes Factor is discussed in

detail by [18] and [19].
The Bayes Factor considering uniform priors over 0θ  and 0θθ −  is given by the following expres-

sion:









++

+−+
−

+
−+

=
)32()22(

)12()1(2
65

!!!)!12(

2)!2(!)!2(

321

2

nn

tnt

xxxn

tntn
BF

x

Here 212 xxt +=  is a sufficient statistic under H. This means that the likelihood under H depends

on data d only through t.

Right side of Table 2 presents figures to compare Ev(d) with the other standard measures for
20=n . Figure 2 presents H and T* for 51 =x , 103 =x  and 20=n .

4.4. Independence test in a 2× 2 contingency table

Suppose that laboratory test is used to help in the diagnostic of a disease. It should be interesting to

check if the test results are really related to the health conditions of a patient. A patient chosen from a

clinic is classified as one of the four states of the set
{ }1or    0,|),( =thth

in such a way that h is the indicator of the occurrence or not of the disease and t is the indicator for the
laboratory test being positive or negative. For a sample of size n we record ),,,( 11100100 xxxx , the

vector whose components are the sample frequency of each the possibilities of (t,h). The parameter

space is the simplex

( )












=∧≥=Θ ∑ 10|,,,
,

11100100
ji

ijij θθθθθθ

and the null hypothesis, h and t are independent, is defined by
{ }100000100000000 ,,| θθθθθθθθθθ +=+==Θ∈=Θ ••••
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Figure 2. Hardy-Weinberg test with 51 =x , 103 =x  and 20=n .

The Bayes Factor for this case is discussed by [17] and has the following expression:
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where 10 iii xxx +=• , jjj xxx 10 +=• , 
2

0

+
= •

n

x
P  and 

2
0

+
= •

n

x
Q .

Table 3. Test of independence.

x00 x01 x10 x11 Ev pV BF PP

12 6 95 35 0.96 0.57 4.73 0.83

48 25 9 10 0.54 0.14 1.04 0.51

96 50 18 20 0.24 0.04 0.50 0.33

18 5 39 30 0.29 0.06 0.50 0.33

36 10 78 60 0.06 0.01 0.11 0.10
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4.5. Comparison of two gamma distributions

This model may be used when comparing two survival distributions, for example, medical proce-

dures and pharmacological efficiency, component reliability, financial market assets, etc. Let
[ ]

1,12,11,1 ,,, nxxx Κ  and [ ]
2,22,21,2 ,,, nxxx Κ  be samples of two gamma distributed survival times. The

sufficient statistic for the gamma distribution is the vector [n,s,p], i.e. the sample size, the observations
sum and product. Let [ ]11, βα  and [ ]22 , βα , all positive, be these gamma parameters. The likelihood

function is:

222111

2

22

1

11
1

2
1

1
2

2

1

1
222111

)()(
)|,,,,,( ss

n

n

n

n

epepdatannf βαβα
αα

α

β

α

β
βαβα −−−−

ΓΓ
∝

This likelihood function is integrable on the parameter space. In order to allow comparisons with

classical procedures, we will not consider any informative prior, i.e., the likelihood function will define

by itself the posterior density.

Table 4 presents time to failure of coin comparators, a component of gaming machines, of two dif-

ferent brands. An entrepreneur was offered to replace brand 1 by the less expensive brand 2. The en-

trepreneur tested 10 coin comparators of each brand, and computed the sample means and standard de-

viations. The gamma distribution fits nicely this type of failure time, and was used to model the proc-
ess. Denoting the gamma mean and standard deviation by βαµ =  and βµσ = , the first hypothesis

to be considered is 21:' µµ =H . The high evidence of H', 89.0)'( =HEv , corroborates the entrepre-

neur decision of changing its supplier. Note that the naive comparison of the sample means could be
misleading. In the same direction, the low evidence of 2121: σσµµ =∧=H , 01.0)( =HEv , indi-

cates that the new brand should have smaller variation on the time to failure. The low evidence of H

suggests that costs could be further diminished by na improved maintenance policy [20].

Table 4. Comparing two gamma distributions.

Brand 1 sample

39.27 31.72 12.33 27.67 56.66

28.32 53.72 29.71 23.76 33.55

mean1=33.67 std1=13.33

Brand 2 sample

28.32 53.72 29.71 23.76 33.55

24.07 33.79 33.10 26.93 27.23

mean2=29.25 std2=3.62

Evidence
89.0)'( =HEv 01.0)( =HEv
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5. Final Remarks

The theory presented in this paper, grew out of the necessity of testing precise hypotheses made on

the behavior of software controlled machines [21]. The hypotheses being tested are software require-

ments and specifications. The real machine software is not available, but the machine can be used for

input-output black-box simulation. The authors had the responsibility of certifying whether gaming

machines were working according to Brazilian law (requirements) and manufacturer's game descrip-

tion (specifications). Many of these requirements and specifications can be formulated as precise hy-

potheses on contingency tables, like the simple cases of Examples 1, 2 and 4. The standard methodolo-

gies, in our opinion, where not adequate to our needs and responsibilities. The classical p-value does

not consider the alternative hypothesis that, in our case, is as important as the null hypothesis. Also the

p-value is the measure of a tail in the sample space, whereas our concerns are formulated in the pa-

rameter space. On the other hand, we like the idea of measuring the significance of a precise hypothe-

sis.

The Bayes factor is indeed formulated directly in the parameter space, but needs an ad hoc positive

prior probability on the precise hypothesis. First we had no criterion to assess the required positive

prior probability. Second we would be subject to Lindley's paradox, that would privilegiate the null

hypothesis [5], [22].

The methodology of evidence calculus based on credible sets presented in this paper is computed in

the parameter space, considers only the observed sample, has the significance flavor as in the p-value,

and takes in to account the geometry of the null hypothesis as a surface (manifold) imbedded in the

whole parameter space. Furthermore, this methodology takes into account only the location of the

maximum likelihood under the null hypothesis, making it consistent with “benefit of the doubt” juridi-

cal principle. This methodology is also independent of the null hypothesis parametrization. This

parametrization independence gives the methodology a geometric characterization, and is in sharp

contrast with some well known procedures, like the Fisher exact test [23].

Recalling [6] in its Chapter 6, - “...recognizing that likelihoods are the proper means for represent-

ing statistical evidence simplifies and unifies statistical analysis.”- the measure Ev(H) defined in this

paper is in accord with this Royall's principle.
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