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Abstract: A Bayesian measure of evidence for precise hypotheses is presented. The inten-
tion is to give a Bayesian aternative to significance tests or, equivalently, to p-values. In
fact, a set is defined in the parameter space and the posterior probability, its credibility, is
evaluated. This set is the “Highest Posterior Density Region” that is “tangent” to the set that
defines the null hypothesis. Our measure of evidence is the complement of the credibility of
the “tangent” region.

Keywords. Bayes factor, numerical integration, global optimization, p-value, posterior den-
Sity.

1. Introduction

The objective of this paper is to provide a coherent Bayesian measure of evidence for precise null
hypotheses. Significance tests [1] are regarded as procedures for measuring the consistency of data
with a null hypothesis by the calculation of a p-value (tail area under the null hypothesis). [2] and [3]
consider the p-value as a measure of evidence of the null hypothesis and present alternative Bayesian
measures of evidence, the Bayes Factor and the posterior probability of the null hypothesis. As pointed
out in [1], the first difficult to define the p-value is the way the sample space is ordered under the null
hypothesis. [4] suggested a p-value that always regards the aternative hypothesis. To each of these
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measures of evidence one could find a great number of counter arguments. The most important argu-
ment against Bayesian test for precise hypothesis is presented by [5]. Arguments against the classical
p-value are full in the literature. The book by [6] and its review by [7] present interesting and relevant
arguments to the statisticians start to thing about new methods of measuring evidence. In a more philo-
sophical terms, [8] discuss, in a great detail, the concept of evidence. The method we suggest in the
present paper has simple arguments and a geometric interpretation. It can be easily implemented using
modern numerical optimization and integration techniques. To illustrate the method we apply it to
standard statistical problems with multinomial distributions. Also, to show its broad spectrum, we con-
sider the case of comparing two gamma distributions, which has no ssmple solution with standard pro-
cedures. It is not a situation that appears in regular textbooks. These examples will make clear how the
method should be used in most situations. The method is “Full” Bayesian and consists in the analysis
of credible sets. By Full we mean that one needs only to use the posterior distribution without the need
for any adhockery, aterm used by [8].

2. The Evidence Calculus

Consider the random variable D that, when observed, produces the data d. The statistical space is
represented by the triplet (X,D,Q) where X is the sample space, the set of possible values of d, D is

the family of measurable subsets of X and Q is the parameter space. We define now a prior model
(Q,B,py4), which is a probability space defined over Q. Note that this model has to be consistent, so

that Pr(A|q) turns out to be well defined. As usual after observing data d, we obtain the posterior
probability model (Q,B,pq4), where py is the conditiona probability measure on B given the ob-
served sample point, d. In this paper we restrict ourselves to the case where the function p4 has a

probability density function.
To define our procedure we should concentrate only on the posterior probability space (Q,B,p4) -

First we will define T; as the subset of the parameter space where the posterior density is greater than
] .
T =fal QIf@>i}
The credibility of T, isits posterior probability,
k=qQ f@lddg = . fj @ld)d

9 Q"

where f; (x) = f(x) if f(x)>] and zero otherwise.
Now, we define f as the maximum of the posterior density over the null hypothesis, attained at the

argument q *,

g*l argmax f(q), f*=1(@*)

al Qo

and define T* =Ty, asthe set “tangent” to the null hypothesis, H, whose credibility is k *. Figures 1
and 2 show the null hypothesis and the contour of set T for Examples 2 and 3 of Section 4.
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The measure of evidence we propose in this article is the complement of the probability of the set

T. That is, the evidence of the null hypothesisis
Ev(H)=1-k * or 1- p4(T*).

If the probability of the set T is“large”, it means that the null set isin a region of low probability
and the evidence in the data is against the null hypothesis. On the other hand, if the probability of T is
“small”, then the null set isin aregion of high probability and the evidence in the dataisin favor of the
null hypothesis.

Although the definition of evidence above is quite general, it was created with the objective of

testing precise hypotheses. That is, a null hypothesis for which the dimension is smaller than that of the
parameter space, i.e. dim(Qg) <dim(Q).

3. Numerical Computation

In this paper the parameter space, Q, is aways a subset of R', and the hypothesis is defined as a
further restricted subset Q, 1 QI R". Usualy, Q,is defined by vector valued inequality and equal-
ity constraints:

Qo =faT Qlg@)£0 U h@)=0}.

Since we are working with precise hypotheses, we have at least one equality constraint, hence

dim(Qg) <dim(Q). Let f(q) bethe probability density function for themeasure p 4, i.e.,

pd(b)=qf(q)dq-

The computation of the evidence measure defined in the last section is performed in two steps, a
numerical optimization step, and a numerical integration step. The numerical optimization step con-
sists of finding an argument g * that maximizes the posterior density f (q)under the null hypothesis.

The numerical integration step consists of integrating the posterior density over the region where it is
greater than f(q*). That is,

Numerical Optimization step:
q*l agmax f(q), j =f*=f1@*)
al Qo

Numerical Integration step:
k* = ij @ [d)dg
where f; (x) = f(x) if f(x)>] and zero otherwise.
Efficient computational algorithms are available for local and global optimization as well as for
numerical integration in [9], [10], [11], [12], [13], and [14]. Computer codes for several such algo-
rithms can be found at software libraries as NAG and ACM, or at internet sites as www.ornl.org.

We notice that the method used to obtain T and to calculate k * can be used under general condi-
tions. Our purpose, however, is to discuss precise hypothesis testing, under absolute continuity of the
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posterior probability model, the case for which most solutions presented in the literature are controver-
sial.

4. Examples

In the sequel we will discuss five examples with increasing computational difficulty. The first four
are about the Multinomial model. The first example presents the test for a specific success rate in the
standard binomial model, and the second is about the equality of two such rates. For these two exam-
ples the null hypotheses are linear restrictions of the original parameter spaces. The third example in-
troduces the Hardy-Weinberg equilibrium hypothesis in a trinomial distribution. In this case the hy-
pothesis is quadratic.
Forth example considers the test of independence of two eventsina 2" 2 contingency table. In this
case the parameter space has dimension three, and the null hypothesis, which is not linear, defines a set
of dimension two.
Finally, the last example presents two parametric comparisons for two gamma distributions. Al-
though straightforward in our paradigm, it is not presented by standard statistical textbooks. We be-
lieve that, the reason for this gap in the literature is the non-existence of closed analytical forms for the
test. In order to be able to fairly compare our evidence measure with standard tests, like Chi-square tail
(pV), Bayes Factor (BF), and Posterior-Probability (PP), we always assume a uniform prior distribu-
tion. In these examples the likelihood has finite integral over the parameter space. Hence we have
posterior density functions that are proportional to the respective likelihood functions. In order to
achieve better numerical stability we optimize a function proportional to the log-likelihood, L(q), and
make explicit use of its first and second derivatives (gradient and Jacobian).
For the 4 examples concerning multinomial distributions we present the following figures (Tables 1,
2, and 3):
Our measure of evidence, Ev, for each d;
the p-value, pV obtained by the c 2 test; that is, the tail area;
the Bayes Factor,

Pr{Qo}Pr{d [Qq}

71 mQd) Pd Q- Qo

the posterior probability of H,
)L
PP =Pr{Q, |d} =11+ (BF) 1} .
For the definition of the Bayes Factor and properties we refer to [8] and [15].

4.1. Success rate in standard binomial model

This is a standard example about testing that a proportion, q , is equal to a specific value, p. Con-
sider the random variable, D being binomial with parameter g and sample size n. Here we consider
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n=20 trials, p=0.5 and d is the observed success number. The parameter space is the unit interval
Q={0£q £1}. The null hypothesisis defined as H :q = p. For al possible values of d, Table 1 pres-

ents the figures to compare our measure with the standard ones. To compute the Bayes Factor, we con-
sider apriori Pr{H} = Pr{q = p} = 0.5 and a uniform density for q under the “alternative’ hypothesis,
A:q! p.Thatis,

an o .
BF =(n+1) *: p? (- p)™.
4]

Table 1. Standard binomia model.

Ev PV BF PP
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.02 0.02
0.01 0.01 0.0 0.09
0.02 0.03 031 0.24
0.06 0.07 0.78 0.44
0.16 0.18 155 061
035 037 252 0.72
064 065 336 0.77
1.00 1.00 3.70 0.79

©O© 00 NO Ol WN PP O|Q

=
o

4.2. Homogeneity test in 2° 2 contingency table

This model is useful in many applications, like comparison of two communities with relation to a
disease incidence, consumer behavior, electoral preference, etc. Two samples are taken from two bi-
nomial populations, and the objective is to test whether the success ratios are equal. Let x and y be the
number of successes of two independent binomial experiments of sample sizes m and n, respectively.
The posterior density for this multinomial model is

n- X, y.m

f@lxynm pagz “agay" .
The parameter space and the null hypothesis set are:
Q={0£q£1]a;+q, =1 Uqs+qs =1
Qo ={a1 Qlay =qs}.
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The Bayes Factor considering a priori Pr{H} = Pr{g; =q5} = 0.5 and uniform densities over g
and q - qq isgiven in the equation below. See [16] and [17] for details and discussion about proper-
ties.

N0 a0
&5 &g (m+1) (n+1)
am+ng  m+n+l

X+Yg

Left side of Table 2 presents figures to compare Ev(d) with the other standard measures for
m=n=20. Figure 1 presentsH and T* for x=10 and y =4 with n=m=20.

BF =

Table 2. Tests of homogeneity and Hardy-Weinberg equilibrium.

Homogeneity Hardy-Weinberg
X y Ev pVv BF PP X, X, Ev pVv BF PP
5 0/ 005 002 025 020 1 2/ 001 0.00 0.01 001
5 1] 018 008 0.87 0.46 1 3 001 001 004 004
5 2,043 021 170 0.63 1 4/ 004 002 011 010
5 3] 071 043 247 071 1 5 009 004 025 020
5 4] 093 071 295 0.75 1 6/ 018 0.08 046 032
5 5/ 100 100 305 0.75 1 7,031 015 077 044
5 6/ 094 072 28 074] 1 8/ 048 026 116 054
5 7,077 049 231 070 1 9 066 039 159 061
5 8/ 058 031 175 064]|] 1 10/ 083 057 200 0.67
5 9/ 039 018 121 055 1 11 095 0.77 234 0.70
5 10| 024 010 0.77 043 1 12| 1.00 099 255 0.72
10 0] 0.OO 000 000 000} 21 13 096 0.78 257 0.72
10 1] 0.00 000 0.02 0.02 1 14| 084 055 239 071
10 2| 001 001 0.07 0.06 1 15| 066 0.33 205 0.67
10 3| 005 002 019 0.16 1 16| 047 016 158 061
10 4| 012 005 041 0.29 1 17/ 027 0.05 106 051
10 5|/ 024 010 0.77 043 1 18| 012 0.00 058 0.37
10 6/ 041 020 123 055 5 Ol 002 0.01 0.05 0.05
10 7/ 061 034 174 063 5 1 009 004 025 0.20
10 8/ 081 053 221 069 5 2 029 0214 060 038
10 9/ 095 075 254 072 5 3 061 034 100 0.50
10 10] 1.00 100 266 073] 5 4 089 065 129 0.56
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Continuation of the Table 2.

Homogeneity Hardy-Weinberg
X y Ev pVv BF PP X, X, Ev pVv BF PP
12 0 000 000 000 OOO| 5 5/ 100 100 134 057
12 1| 000 000 000 OOO| 5 6/ 090 066 118 054
12 2| 000 000 001 001} 5 7/ 066 039 08 047
12 3 001 000 004 004| 5 8/ 040 020 058 037
12 4/ 003 001 010 009 5 9] 0212 009 032 024
12 5/ 007 003 024 019 5 10 009 004 016 013
12 6/ 014 006 046 032 9 0] 022 009 073 042
12 7/ 026 011 08 044 9 1] 066 039 15 061
12 8/ 042 021 124 055 9 2/ 099 091 177 064
12 9/ 062 034 173 063]| 9 3] 086 059 133 057
12 10 081 053 221 069| 9 4/ 049 026 074 043
9 5 021 009 032 024
9 6/ 006 003 011 010
9 7/ 001 0.01 003 0.03
0.9f
0.8f
0.7{
- Qp
0.6f
g3 0.5 T*
0.4f
0.3f " 4
0.2f
0.1f
0.2 0.4 0.6 0.8
O

Figure 1. Homogeneity test with x =10, y=4 and n=m= 20.
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4.3. Hardy-Weinberg equilibrium law

In this biological application there is a sample of n individuals, where x, and x, are the two ho-
mozigote sample counts and X, =n- X; - X3 is hetherozigote sample count. q = [ql,qz,q3] is the pa-

rameter vector. The posterior density for this trinomial model is
f@1%) 1 alay%a58
The parameter space and the null hypothesis set are:
Q={as0la;+a,+a3 =1
_— 24
Qo:%q| Q |Q3:(1' \/i) g

The problem of testing the Hardy-Weinberg equilibrium law using the Bayes Factor is discussed in
detail by [18] and [19].

The Bayes Factor considering uniform priors over g, and q - q is given by the following expres-
sion:
_ (n+2)!tH(2n- 1)1 2% é/6 _2(t+D (2n-t+Du
T 2n+D) X! X! X! §’ (2n+2) (2n+3) {
Here t = 2x; + X, isasufficient statistic under H. This means that the likelihood under H depends

BF

on datad only through t.

Right side of Table 2 presents figures to compare Ev(d) with the other standard measures for
n=20.Figure 2 presentsH and T for x;, =5, x3 =10 and n=20.

4.4. Independencetestina 2" 2 contingency table

Suppose that laboratory test is used to help in the diagnostic of a disease. It should be interesting to
check if the test results are really related to the health conditions of a patient. A patient chosen from a
clinicis classified as one of the four states of the set

{hy|ht=0o0r 1
in such away that h is the indicator of the occurrence or not of the disease and t is the indicator for the
laboratory test being positive or negative. For a sample of size n we record (Xgg, X1, X109, ¥11) » the
vector whose components are the sample frequency of each the possibilities of (t,h). The parameter
space is the simplex

I R P
Q:}. (G00:901.610.011) 1 @ 2 0 U & =ly
i ] b
and the null hypothesis, h and t are independent, is defined by
Qo={al Q | dgo =0p. 9.0, Ao =Coo +To1: 9.0 =Coo +0ao}
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0.9

as

Figure 2. Hardy-Weinberg test with x; =5, X3 =10 and n=20.

The Bayes Factor for this caseis discussed by [17] and has the following expression:

0. O a8y O
o - P00 851 (1+2{(n+3- (1+2[PA- P+Qu- Q
@&no 1 4(n+1)
X.0 0
. =X . . = . . = XO = X-O
where Xi. =X+ X1, X.j =Xgj + X%, P — and Q -t

Table 3. Test of independence.

Xoo Xo1 X0 Xu| Ev pVv BF PP
12 6 95 35 096 0.57 4.73 0.83
48 25 9 10| 054 0.14 1.04 0.51
9% 50 18 20| 0.24 0.04 0.50 0.33
18 5 39 30[ 029 0.06 0.50 0.33
36 10 78 60| 0.06 0.01 0.11 0.10

107
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4.5. Comparison of two gamma distributions

This model may be used when comparing two survival distributions, for example, medical proce-

dures and pharmacological efficiency, component reliability, financial market assets, etc. Let
X1, %0.2.K X ] @0d [Xo1,%02,K |, Xa,, ] be samples of two gamma distributed survival times. The

sufficient statistic for the gamma distribution is the vector [n,s,p], i.e. the sample size, the observations
sum and product. Let [al,bl] and [a2,b2], all positive, be these gamma parameters. The likelihood

function is;

am apny
1 b2

Ga;)™ Gay)™

This likelihood function is integrable on the parameter space. In order to allow comparisons with

classical procedures, we will not consider any informative prior, i.e., the likelihood function will define
by itself the posterior density.

Table 4 presents time to failure of coin comparators, a component of gaming machines, of two dif-

ferent brands. An entrepreneur was offered to replace brand 1 by the less expensive brand 2. The en-

trepreneur tested 10 coin comparators of each brand, and computed the sample means and standard de-

viations. The gamma distribution fits nicely this type of failure time, and was used to model the proc-
ess. Denoting the gamma mean and standard deviation by m=a/b and s =nyb, the first hypothesis

to be considered is H': m = m,. The high evidence of H', Ev(H") =0.89, corroborates the entrepre-

f(n,ay,by,nya5,b, | data) p part g b paarl g bos

neur decision of changing its supplier. Note that the naive comparison of the sample means could be
misleading. In the same direction, the low evidenceof H: m =m, Us, =s,, Ev(H)=0.01, indi-

cates that the new brand should have smaller variation on the time to failure. The low evidence of H
suggests that costs could be further diminished by naimproved maintenance policy [20].

Table 4. Comparing two gamma distributions.

Brand 1 sample
39.27 3172 1233 27.67 56.66
2832 5372 29.71 2376 3355
mean,=33.67 std,=13.33
Brand 2 sample
2832 5372 29.71 2376 3355
2407 3379 3310 2693 27.23
mean,=29.25 std,=3.62

Evidence
Ev(H') =0.89 Ev(H) =0.01
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5. Final Remarks

The theory presented in this paper, grew out of the necessity of testing precise hypotheses made on
the behavior of software controlled machines [21]. The hypotheses being tested are software require-
ments and specifications. The real machine software is not available, but the machine can be used for
input-output black-box simulation. The authors had the responsibility of certifying whether gaming
machines were working according to Brazilian law (requirements) and manufacturer's game descrip-
tion (specifications). Many of these requirements and specifications can be formulated as precise hy-
potheses on contingency tables, like the simple cases of Examples 1, 2 and 4. The standard methodolo-
gies, in our opinion, where not adequate to our needs and responsibilities. The classical p-value does
not consider the alternative hypothesis that, in our case, is asimportant as the null hypothesis. Also the
p-value is the measure of atail in the sample space, whereas our concerns are formulated in the pa
rameter space. On the other hand, we like the idea of measuring the significance of a precise hypothe-
Sis.

The Bayes factor is indeed formulated directly in the parameter space, but needs an ad hoc positive
prior probability on the precise hypothesis. First we had no criterion to assess the required positive
prior probability. Second we would be subject to Lindley's paradox, that would privilegiate the null
hypothesis[5], [22].

The methodology of evidence calculus based on credible sets presented in this paper is computed in
the parameter space, considers only the observed sample, has the significance flavor as in the p-value,
and takes in to account the geometry of the null hypothesis as a surface (manifold) imbedded in the
whole parameter space. Furthermore, this methodology takes into account only the location of the
maximum likelihood under the null hypothesis, making it consistent with “benefit of the doubt” juridi-
cal principle. This methodology is also independent of the null hypothesis parametrization. This
parametrization independence gives the methodology a geometric characterization, and is in sharp
contrast with some well known procedures, like the Fisher exact test [23].

Recalling [6] in its Chapter 6, - “...recognizing that likelihoods are the proper means for represent-
ing statistical evidence simplifies and unifies statistical analysis.”- the measure Ev(H) defined in this
paper isin accord with this Royall's principle.

Refer ences and Notes

1. Cox, D.R. Therole of significance tests. Scand. J. Statist. 1977, 4, 49-70.

2. Berger, J.O.; Delampady, M. Testing precise hypothesis. Satistical Science 1987, 3, 315-352.

3. Berger, J.O.; Boukai, B.; Wang, Y. Unified frequentist and Bayesian testing of a precise hypothe-
sis. Satistical Science 1997, 3, 315-352.

4. Pereira, C.A.B; Wechdler, S. On the concept of p-value. Braz. J. Prob. Satist. 1993, 7, 159-177.

5. Lindley, D.V. A statistical paradox. Biometrika 1957, 44, 187-192.



Entropy 1999, 1 110

10.

11.

12.
13.

14.

15.
16.

17.

18.

19.

20.

21.

22.
23.

Royall, R. Satistical Evidence: A Likelihood Paradigm; Chapman & Hall: London, 1997; p 191.
Vieland, V.J.; Hodge, S.E. Book Reviews. Statistical Evidence by R Royall (1997). Am. J. Hum.
Genet. 1998, 63, 283-289.

Good, 1.J. Good thinking: The foundations of probability and its applications; University of Min-
nesota Press, 1983; p 332.

Fletcher, R. Practical Methods of Optimization; JWiley: Essex, 1987; p 436.

Horst, R.; Pardalos, P.M.; Thoai, N.V. Introduction to Global Optimization; Kluwer Academic
Publishers: Boston, 1995.

Pintér, J.D. Global Optimization in Action. Continous and Lipschitz Optimization: Algorithms,
I mplementations ans Applications; Kluwer Academic Publishers: Boston, 1996.

Krommer, A.R.; Ueberhuber, C.W. Computational Integration; SIAM: Philadelphia, 1998; p 445.
Nemhauser, G.L.; Rinnooy Kan, A.H.G.; Todd, M.J. Optimization, Handbooks in Operations Re-
search; North-Holland: Amsterdam, 1989; Val. 1, p 709.

Sloan, I.H.; Joe, S. Latice Methods for Multiple Integration; Oxford University Press. Oxford,
1994; p 239.

Aitkin, M. Posterior Bayes Factors. J. R. Statist. Soc. B. 1991, 1, 111-142.

Irony, T.Z.; Pereira, C.A.B. Exact test for equality of two proportions. Fisher” Bayes. J. Satist.
Comp. & Smulation 1986, 25, 93-114.

Irony, T.Z.; Pereira, C.A.B. Bayesian Hypothesis test: Using surface integrals to distribute prior
information among hypotheses. Resenhas 1986, 2, 27-46.

Pereira, C.A.B.; Rogatko, A. The Hardy-Weinberg equilibrium under a Bayesian perspective.
Braz. J. Genet. 1984, 7, 689-707.

Montoya-Delgado, L.E.; Irony, T.Z.; Pereira, C.A.B.; Whittle, M. Unconditional exact test for the
Hardy-Weinberg law. Submitted for publication 1998.

Marshall, A.; Prochan, F. Classes of distributions applicable in replacement, with renewal theory
implications. Proc. 6th Berkeley Symp. Math. Satist. Prob. 1972, 395-415.

Pereira, C.A.B.; Stern, JM. A Dynamic Software Certification and Verification Procedure. Proc.
ISAS 99 - International Conference on Informations System Analysis and Synthesis 1999, 11, 426-
435.

Lindley, D.V. The Bayesian approach. Scand. J. Satist. 1978, 5, 1-26.

Pereira, C.A.B.; Lindley, D.V. Examples questioning the use of partial likelihood. The Satistician
1987, 36, 15-20.

© 1999 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.



