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SUMMARY

Gibbs paradox statement of entropy of mixing has been regarded as the theoretical foundation of statistical
mechanics, quantum theory and biophysics. A large number of relevant chemical and physical observations show
that the Gibbs paradox statement is false. We also disprove the Gibbs paradox statement through consideration of
symmetry, similarity, entropy additivity and the defined property of ideal gas. A theory with its basic principles
opposing Gibbsparadox statement emerges: entropy of mixing increasescontinuously with theincreasein similarity
of the relevant properties. Many outstanding problems, such as the validity of Pauling’s resonance theory and the
biophysical problem of protein folding and the related hydrophobic effect, etc. can be considered on a new
theoretical basis. A new energy transduction mechanism, the deformation, is also briefly discussed.
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1. INTRODUCTION

The Gibbsparadox of mixing saysthat the entropy of mixing decreases discontinuouslywith anincrease
in similarity, with a zero value for mixing of the most similar or indistinguishable subsystems: The
isobaric and isothermal mixing of one mole of an idea fluid A and one mole of a different ided fluid
B has the entropy increment

(As)disxinguishable =2RIn2=1153JK™?! Q)

where Ris the gas constant, while
(As)indistinguishable =0 (2)

for the mixing of indistinguishable fluids [1-10]. It is assumed that Equations (1) and (2) are adso
applicable to the formation of solid mixturesand liquid mixtures.

Gibbs paradox statement of entropy of mixing has been regarded as the theoretical foundation of
statistical mechanics [11], quantum theory [12] and biophysics[7]. The resolutionsof this paradox has
been very controversia for over one hundred years. Many famous physicistsconfidently claim that they
have resolved thisparadox, in very diverse and different ways. A sustaining problemis that they do not
agree with each other. For example, besides numerous other resolutions [2, 4-9], von Neumann [13]
provided awell-known quantum mechanical resolution of this paradox with which not many othersare
infull agreement [6].

Though the vaidity of this statement has been taken for granted in all of the textbooks for over a
century, and it seems impossible for the present author, like anyone else, to conceive at first sight that
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there were any entropy effects when mixing indistinguishablefluids, it is theoretically challenged once
the Gibbs paradox statement isfinally compared to al of the striking physical redlities.

With the establishment of the logarithmic relation of symmetry and entropy [1], it a so becomes very
straightforward to prove formally, as will be done here, that Gibbs paradox statement, as expressed in
the Equations (1) and (2) and other related expressions, iswrong. These formulas of entropy—similarity
correlation and the entropy—symmetry correlation constitute a new theory.

A brief overview and descriptive outlineof the solution of several outstanding problems of structural
relative stabilities and process spontaneities will also be presented. For example, by opposing von
Neumann's conclusion [13], the mixing of quantum states of indistinguishable properties gives the
maximum entropy which immediately lends support to the validity of Pauling’s resonance theory. |
present these results here in order to arouse the attention of the theoreticiansin chemistry and physics:
avery fundamental aspect of statistical mechanics has to be reconstructed.

2. ENTROPY EXPRESSIONS

For anideal gassystem of N monatomi ¢ parti cles, from the M axwel |I-Bol tzmann momentum distribution
of free particles, the partition function of any one of these N free particles due to kinetic energy of
trandational motioninasystem of Vand T is[14]

o B[ fusn [ fe
1

50 V- (2mmhg T)3/2 ©)
where the total energy E includes only the kinetic energy of trandationa motion, mis the mass, and
p; (i = z,y,2) ismomenta. The Boltzmann constant kg will be taken as 1 in most of the following
entropy expressions. According to classical statistical mechanics, naturally the partitionfunction of the
system of N independent particles should be

Q=q" 4)
Therefore, entropy should be

2 ) t2 ©)

S(V,T) = kN [In V4 gln (M> 3]

Fromthisoriginal formulaof the classical statistica mechanics, theisobaricisothermal mixing of N
subphases of gases Gy, . . ., Gy, . . .,Gn with particlenumbers Ny, ..., Ny, ..., Ny will have alimited
value of entropy increase, provided that the N particles are independent, regardl ess of whether they are
different or identical ideal gas particles. Our entropy—similarity correlation conformswith theclassica
statistical mechanics.

In all modern statistical mechanics texts, however, instead of Equation (4), theformulais

Q=1a" ©

The rgjection of the Gibbs paradox statement is the removal of afactor 1/ N! in the partition function
expression (Equation (6)), provided that Equation (3) is till valid.
Equation (6) with the factor 1/N! in it is assigned (not derived) subjectively by Gibbs (see the
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concluding part of hisbook [15]) solely due to the argument of particleindistinguishability. Thisfactor
asserts explicitly that all N! permutations of the N indistinguishable particles must be counted as 1,
because of the permutation symmetry [14].

The effort to design experimentsthat are pertinent to the question of gaseous phase mixing, to check
directly whether thefactor 1/ N'! should be removed from Equation (6), is not successful. In many cases
the difference between Equation (4) and Equation (6) is not noticeabl e because most formulas, such as
those of pressure

0
P_NkBT<WInQ>T (7)
and of the total energy
0
_ 2
E = NkgT <_8TInQ>V (8)

give observable quantities through the derivative of the logarithm of (), as we understand that a
differentia of alogarithmof aconstant, whether itis1or N!, isO. Interestingly, only entropy expressions
have adifference: by using Stirling approximation (N'! ~ (N /e)™), the use of Equation (6) yieldsthe
well-known Sackur—Tetrode equation [ 16]

S(V,T) = ke N [Inv+gln<w> 3

72 + é] — NkgInN + Nkg (9)

From thisexpression, the entropy increment dueto mixing of the same gasesis zero. On the contrary,
from Equation (5) we find that the entropy of mixing is the same whether the subsystem particles
are distinguishable or indistinguishable. But, as elegantly argued by Stern [17], it is also practically
impossible by entropy measuring through cal orimetry to decide the existence or non-existence of the
factor 1/ N'!inthepartition function expression and theentropy term kg In N'! inthe entropy expression.
Furthermore, as pointed out by Kaplan [18], all observable quantitiesare invariant under permutation of
identical particlesand, consequently, the permutationsof identical particlescannot bedirectly observed.

However, as will be seen in thefollowing section, there are alarge number of physical and chemical
observationswhich can be used to check whether the Gibbsparadox statement and therelevant formulas
of entropy are valid or not.

3. FACTS
3.1. Mixingof hydrocarbonsin water

Notethat it is assumed that Equations (1) and (2) are also applicable to solid mixtures as well as gases
and liquids.

Two dropl etsof hydrocarbonsinwater will spontaneously mergeto form acombined phase (Figure 1).
Hydrocarbons pentane (A) and hexane (B) mix in water because they are similar in properties. In fact,
two identica hydrocarbons pentane (A) merge no less spontaneously than the mixing of A and B
(Figure 1) in water.

One may argue that the examples given here are a problem of the interface between oil and water.
This problem will be treated very throughly elsewhere (see also Section 6.3). However, in fact, really
different fluids such as oil and water do not spontaneously mix, and really similar or identical fluids
do mix. In atypical phase separation experiment, realy different compounds separate as a result that
indi stinguishabl e substances most spontaneously ‘mix’.
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Figurel. Mixingof hydrophobic fluidsof different but smilar properties(a) and of indistinguishable properties (b)

Firstly, suppose a drop of hydrocarbon A (say, benzene) and a drop of another hydrocarbon B
(toluene) are distributed in the third liquid C (water). As a consequence of their difference, A does not
mix with C. This means that Equation (1) does not generally conform with the observation. One can
expect that thetwo oil drops A and B will mix to form ahomogeneous organic phase and separate from
the agqueous phase (C). The spontaneous mixing of A and B should have an entropy of mixing, dueto
thesimilarity of A and B, which conformsvery well withthe corréation of entropy—similarity [1]. Now
if both A and B are dropl ets of indistinguishablehydrocarbons (both are toluene dropl ets, for instance),
one would predict, from Equations (1) and (2), that A and B will not mix because there is no entropy
of mixing (Equation 2). In fact, the opposite istrue: the well-known hydrophobic effect [19, 20]. Phase
equilibriummeasurements reveal that the entropy of mixing (A mixeswith A) from C (water) isaways
positive (Table 1) [20] and that the entropy increase is the dominant effect contributing to the decrease
of the Gibbs free energy (G) [20]. Because the two droplets (A and A) can be originally distributedin
water (C) mechanically (or homogeneously at €l evated pressure and temperature), this phase separation
process is more accurately described as demixing.

3.2. Entropy of acrystal versus entropy of agas

To divide a certain volume of an idea gasinto haf of its origina volume with an equa half number
of particles, the system of 1 mole of the same fluid (say a gas of the same kind) isfinaly put into Na
number of chambers, and each particleis confined within avolume of V' /N (cf. Figure 2), Na being
Avogadro number. The situation islike a lattice structure. The particles are highly strictly confined in
space. The release of N particles from their individual confinements, so that al of the particles mix
and have the whole space of volume V to perform Brownian motion in solution or free trandational
motion in gaseous state, will unavoidably result in alarge entropy increment [21], presumably

AS = kg INN® = RInNa (10)

The Gibbs paradox argument of distinguishability is very vulnerable at this point: it is ridiculous
to assume that the entropy of an ideal crystal is greater than that of the corresponding idea gas by
includingafactor 1/ N'! in the partition function expression for agas. As everybody knows, particlesin
alattice structure are highly constrained (relative to a gas), and the system has amuch smaller entropy
value than that of the corresponding gas[22, 23]. But, as Gasser and Richards[21] explicitly indicated,
theinclusion of 1/ N'! in Equation (6) means that
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Tablel. Thermodynamic parameters (kcal mol—2) in the transfer of hydrocarbonsfrom water to organic phases
(data from [20]).

Process T(K) TAS AH AG

CsHs in water to liquid propane 298 685 180 -—505
n-C4Hao in water to liquid n-butane 298 6.85 100 -5.85
CesHe in water to liquid benzene 291 407 0.00 —-4.07
C7Hsg in water to liquid toluene 291 465 000 —465

CgH1o in water to pure ethylbenzene 291 550 0.00 -550
m- or p-xylenein water to pure CgHip 291 580 0.00 -5.80

Werystal
Scrysxal - Sgas = kg In (_y)

wgas
kg In N
= kN(nN—1) (11)

which in turn means clearly that the solid phase has an entropy content substantially higher than the
corresponding gas. This is impossible! The inclusion of —kgIn N! in the Sackur—Tetrode equation
(Equation (9)) must be wrong.

3.3. No-reaction reactions

In dl of the textbooks, racemization is described as a process driven by the entropy of mixing of two
enantiomers R and S (Figure 3). In fact, if a racemization happens, there is amost dways a similar
reaction that leads to the formation of a product which isidentical to the educt.

One example is the Sy 2 reaction of iodide and ethyliodide (Figure 4). Because the reactant and
the product are indistinguishable, these reactions are the so-called no-reaction reactions. From these
phenomena, we see that, if a process of mixing different species spontaneously happens, there must be
asimilar process that happens no less spontaneously between identical particles.

Consider the reaction in Figure 5. If the compounds A and B are very different in properties, for
example their energy levels are very different (here B is much lower) then the resonance reaction will
seldom happen. In principle, therewill be areversal reaction, but thereversal reaction can bepractically
ignored. Therefore, such ‘mixing’ does not happen efficiently, if ever, if they are different in properties.
Therefore, once again, differenceis not the source of the entropy of mixing.

3.4. Combinatorial chemistry and molecular diversity

A mixture of different molecules and a mixture of indistinguishable compounds must have different
entropy increments during the mixing processes. Then, a process to prepare such mixtures should have
different entropy and information increments.

Prectically, thereisatrivial standard about molecul ar diversity [24] that acollection of many different
molecules are certainly more interesting than the collection of the same number but otherwise very
similar or indistingui shable compounds. A theoretical explanationfor thevaidity of thisstandard should
be an easy task. However, mathematical relations between entropy (defined as information loss) and
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Entropy increasing direction -

Figure2. Mixing conceived as a processof removing constraints

diversity, similarity and indistinguishability were never explicitly established in conventional statistical
mechanics texts. What isworse, an informational theoretical explanation isconfronted with the famous
Gibbs paradox statement of entropy of mixing [2—13]. The statement says that the mixing of different
compounds (which should be desirable for a compound library of a high-quality molecular diversity
as a mixture) has an entropy of mixing, while mixing of indistinguishable molecul es has minimum —
which is zero — entropy of mixing. Thisimplies that a mixture (or a combinatorial compound library)
of many different compounds provides less information than alibrary consisting of many very similar
or identical compounds!

In fact, the combinatorial compound library of high diversity is more significant, because it contains
more information [24]. The high throughput screening technique uses mixtures of several compounds
to perform a biological activity test. A mixture of severa very similar compounds will contain less
information than that of severd different compounds.

3.5. Phasetransitions

Consider two static structures: everything is identical, e.g. the same number of molecules, type of
mol ecul es, temperature and density, etc., and the only differenceistheir symmetries (Figure 6), i.e. in
one system the molecules have different orientation and molecules in the other system have identical
orientation, the structure of a perfect crystal. According to statistical mechanics [25] the one with
different spin or molecular orientations has a higher entropy and the spontaneously generated static
structure should be the one with different orientations. Thisisthe prediction based on the Gibbs paradox
statement, Equation (1). However, at |ower temperature, weobserve that the spontaneously formed most
stable solid structureis awaysthe perfect crystal, where mol ecul es or spins spontaneously orient to an
indistinguishable direction. Note, at low temperature, the energy decrease is not a prominent driving
force. The entropy increase must be the main factor in relation to the relative stabilities. From basic
knowledge of eectromagnetism, parald orientation in solids is higher in energy than non-paralléd
orientations, irrespective of whether the individuas are polar molecules (electric dipoles) or spins
(Figure6)!

We have treated the phase transitions in a thermodynamic system at a hierarchica level by a
thermodynamic temperature T and an informational temperature 1) [26]. Phase transitions at lower
values of | T'| to form more symmetric static phase, such as acrystal structurewith al of the molecules
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Figure3. Racemization (interchange of thetwo enantiomersRand ) (a) and theno-reaction reaction (interchange
of Ato A) (b)

orienting in one direction, has been conventionally called second-order phase transitions. This process
may happen not only in a conventional thermodynamic system, such as a system of many molecules,
but also in a system of electrons in an atom or a molecule when the | T'| of the local thermodynamic
temperatureislow [27]. Conventional statistical mechanics would predict the formation of non-perfect
static structures. In fact, at such low values of the local thermodynamic temperature | 7’|, the most
symmetrical static structures are the most spontaneously formed!

3.6. Mixing of quantum states and valence bond structures

We may apply the term ‘mixing’ as used by von Neumann [13] to a quantum system. We find that
resonance among severa energetically and configurationally indistinguishable structures [28], such as
Kekule structures of benzene, isthe most prominent one. Resonance means the time average of severd
states used to represent asystem [29]. The resonance principlehas been skilfully used by Pauling (p. 12
of [28]) who attributed the resonance principleto Heisenberg [29].

In quantum mechanics, we distinguish observables from states. Observables, like momentum and
angular momentum, etc., are mathematically described by self-adjoint operatorsin Hilbert space. We
encountered theproblem, asindicatedin Section 2, that entropy isnot an observable. Statesaregenerally
mixed and are represented by a density matrix [30], say p, i.e. a Hermitian operator, whichis no less
than zero and has trace equal to 1. We define the density matrix in away that the expected value of an
observable A inthe state pis (A) = TrpA. The diagonized density matrix is

p=>_plk)k| (12)
k=1

where |k) is the kth eigenvector, p;, = (0,0,0,...,pk, .. .,0,0,0), |k) (k| isthe projection on |k), and
the eigenvalue p;, isthe probability of finding the system in the kth pure state | k). Then,

S==> peInp; (13)
k=1
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Figure4. Examples of racemization and the no-reaction reaction catalyzed by iodide.

More generaly, following von Neumann,
S(p) = —=Trplnp (14)

If al of the w pure states have indistinguishable properties (e.g. their eigenvalues of certain operators
are of same value), we have the familiar Boltzmann formula

S=Inw (15)

which represents the maximum entropy, based on the famous Gibbsinequality:

=D pelnps <Inw (16)
k=1

More historical background [30] and more detailed definitions[31] can be found in literature.

Then, without exception, the practical exampl e of thecal cul ationsindicatesthat only when thew pure
states have indistingui shabl e properties (such as configurations and energy states, etc.) can we have the
most prominent mixing of states (to give the best ‘resonance hybrid’ (p. 12 of [28])! Only when the
w pure states have indistinguishable properties, can the w pure states make equal contributionsto the
normal state of the quantum system. If thew pure states are of indistinguishable properties, only when
they make equal contributions can they achieve the maximum stability. Note in practical calculation,
that the w pure states can be taken as w microstates or w valence bond structures (p. 12 of [28]), etc.
All of the examples of resonance given in Pauling's book [28] support this conclusion. Two examples
of such perfect mixing are given in Figure 7.

Pauling also gives examples of the efficiency of resonance and the energy state similarities of severa
considered structures (p. 22 of [28]).

4. DISPROOF OF GIBBSPARADOX STATEMENT

The disproof of the Gibbs paradox statement as expressed in Equations (1) and (2) can be donein
the following ways: first from the symmetry argument, then the similarity argument. Two additional
arguments are al so given afterwards.
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A _> B

Figure5. Reaction in one direction, provided that their energies are very different and that the reaction is not
carried out at a very high temperature

41. Symmetry number and entropy

Starting from the von Neumann—Shannon entropy expression, Equations (13) and Boltzmann formula
(15) we prove that this statement is wrong: Gibbs paradox statement impliesthat the entropy decreases
with an increase in symmetry (as represented by a symmetry number o; see any statistical mechanics
textbook) [1]. This can be expressed as

S=—Ino a7)

From group theory any system hasat least asymmetry number o = 1, whichistheidentity operation
for astrictly asymmetric system: o > 1. It followsthat the entropy of asystem isequal to, or less than,
zero:

S$<0 (18)

However, from either von Neumann—Shannon entropy formula(13) or the Boltzmann entropy formula
(15) and the original definition, entropy is not negative. Therefore, this statement isfalse.

4.2. Similarity and Gibbsinequality
From the Gibbs inequality (Equation (16)),

w
_Zpi Inp; <Inw
=1

and the general expression (Equation (13))

w
§=-) »inp
i=1

and the expression for the maximum entropy (Equation (15))
S=Ilnw

and the conditions for a mixing process to gain maximum entropy, i.e. indistinguishability, the Gibbs
paradox statement (Equations (1) and (2)) must be false. The conclusions in Equations (1) and (2)
violate theinequality (16). There is afamous discontinuity in changing from Equation (1) to Equation
(2). From the genera expression of entropy (Equation (13)), the variation of entropy of mixing is
continuous, depending on the similarity of the relevant properties[24].

4.3. Entropy additivity

Moreover, it is clear that the Gibbs paradox statement of entropy of mixing contradicts the entropy
additivity principlesuggested by Gibbshimself. From Gibbs entropy additivity principle (or law) [32],
the entropy of a mixture of ideal gases is equa to the sum of the entropies that each gas separately
would have if they each occupied the volume of the mixture. For an ided gas, if only the trandational
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Figure 6. Molecular or spin orientations. According to conventional statistics, the solid mixture at (a) has an
entropy of mixing while that at (b) has no entropy of mixing. e have always observed (b) as a much more stable
structure

motion is considered, the Gibbs entropy additivity

N
S = Z S; (19)
=1
and the Dalton pressure additivity
N
P=>"P (20)
=1

take the same form as Gibbs explicitly indicated [32]. Obviously, as should be agreed by everybody,
the pressure additivity is suitable for ideal gases, regardless of whether they are distinguishable or
indistinguishable. Then, it is unreasonable that the entropy additivity is suddenly not suitable for
indistinguishableideal gases. Shownin Figure 8 isacycle rdated to such amixing process. The Gibbs
entropy additivity law, being applicable to gases of the same particles, isequivalentto (AS)1 = O (step
linthecycle). Step 2istrivialy an isothermal expansion which gives (AS), = 2R In2 for the volume
increase from V to 2V. Then step 3 must give a non-zero entropy increment,

(AS)3 = (AS)1 + (AS)2 (21)
or
(AS) samefiuids = 2R In2 (22)

for mixing the same (indistinguishable) ideal fluids. Facing the clear contradiction of the entropy
additivity law and the Gibbs paradox statement, we have to defend the entropy additivity principle and
deny the latter. Consequently Equation (6) iswrong.

4.4. ldeal gasdefined asindependent particles

Notethat theinclusion of theterm —kg In V! in the Sackur—Tetrode equation (Equation (9)) will imply
that the N particlesin consideration are not independent. This contradicts what was required for the
definition of ideal gas: the entropy contribution of a particle

|

3
S/N:Ekg—kkglnq—

depends on the presence of other particles or depends on the total number of particles (N) if the total
entropy is calculated by Sackur—Tetrode equation (Equation (9)). The partial molar entropy in an ideal
gas mixture will also depends on the total number of particlesin the container.
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Figure7. The perfect resonancein the description of the one-electron bond in the hydrogen moleculeion and the
stability of benzene[ 28]

5. RESULTS

From the facts (Section 3) and the logical arguments (Section 4), we present the following results.

5.1. Theterm InN!

Asthe relation between particle indistinguishability and the permutation symmetry of a many-particle
system remains atopic of debate[18], it will be practically pertinent to treat theterm InN! as aresidual
entropy [1]. Following the tradition of Pauling (his treatment of the entropy discrepancy between the
measured and the calculated values for water vapor [33] by including a residual entropy due to the
loca symmetry of water molecules [33], the random orientational disorder and the local tetrahedral
symmetry of ice[1]), we suggest that, for the real particles, thereisaresidual entropy

So=InN! (24)

due to the residual permutation symmetry in a perfect crystal of the system of N identical particles at
T=0.
Theideal gas model assumes that theideal gas state equation

PV = nRT (25)

is, in principle, vaid throughout the whole temperature and volume range (0,00). The calculation
based on theideal gas model never expects a condensed phase when T approaches 0. A system of real
particles, however, has alimited (non-zero) intrinsicvolume, asimplied inthevan der Waals' equation.
However, in definition, the ideal gas particle has no volume. Then, in principle, al of the N idea gas
particles can be packed into a space of infinitedly small volume (or into an element of phase space
smaller than that defined by the Planck constant), or amathematical point—a‘singularity’, presumably
withw = 1:

Sidea.:Inw:O (26)

Therefore, it is not unreasonable that the Nernst entropy, which can be measured by calorimetry for
real gases, is connected to theideal gas entropy as

SNernst = Sideal - So (27)

where S, (Equation (24)) is the calorimetrically unmeasurable quantity which we cdl, following
tradition, aresidua entropy, which is temperature independent.

The residual entropy due to the symmetry of permutation (Equation (24)) is tremendous. For 1 mol
of particles, S, = INNa! ~ Na(InN4 — 1) = 3.24- 10%. Therefore, if we prefer to treat areal gas by
the ideal gas mode (for a substance has no other residual entropy except for the residual permutation
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Figure 8. Gibbs entropy additivity principle (step 1), isothermal expansion (step 2) and isothermal isobaric
mixing (step 3) with observable mechanical work output

entropy a 7' = 0, one should include theterm S:
Sideal = SNernst + So (28)
where Sj4eq IS calculated by Equation (5), an entropy formulawithout theterm In N 4!.

5.2. Entropy and symmetry

Whether the system is in dynamic motion or is a static structure, we observed that the most stable
structure is the one at equilibrium which has either the highest dynamic symmetry or/and static
symmetry [1]. Therefore, the entropy calculated as the amount of information loss can always be
quantitatively estimated according to S = Inw or generaly

S =Inwy (29)
where w;, isthe apparent symmetry number [1]. Entropy alwaysincreases with anincreasein symmetry.

5.3. Entropy and similarity

Entropy of al kinds of mixing processes increases with an increase in the similarity of the relevant
properties of the individuals to be mixed. This conclusion can be expressed by a definition of the
similarity index [1, 24]:

S D1 bilnp;
Z=_" = 2=l 30

Therefore, entropy increases continuously with an increase in similarity:

6. APPLICATIONS

In al of the chemical and physical observations given in Section 3 and the logical analysis given in
Section 4, we have shown that the most spontaneous process also gives a maximum entropy increase.
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This conforms perfectly with the second law of thermodynamics. The entropy increase as an indication
of process spontaneity and state stability can be used in many applications, including both practical and
theoretical problems.

6.1. Mixingand separation

The rgection of Gibbs paradox and the recognition of maximum entropy of mixing of most similar (or
indistinguishable) substances enable us to invent a quite general technique of facile organic synthesis
[34]. The essentid point of the correlation of entropy of mixing and substance similarity is that
substances of redly different properties will separate (or demix) with the result that substances of
really indistinguishable properties will mix or self-aggregate driven by the entropy effect. Obvioudy
temperature and pressure are conditionswhich can be varied to adjust the property similarities among
the components in a reaction vessdl [34]. Self-organization patterns can be controlled by changing
property similarities of the constituent individuals.

6.2. Hydrophobic effects

A satisfactory explanation of the hydrophobic effect is possible only if the Gibbs paradox of entropy of
mixing isrejected. Hydrophobic effect is observed in the protein folding phenomena. A large number
of various theories have been published in recent years about the hydrophobic effect in general and
protein folding in particular. Many authors believe that entropy of mixing plays an important role in
the hydrophobic effect [35]. The phenomena of the hydrophobic effect is simple: fluids of identical or
very similar properties mix spontaneously. Fluids of very different properties (oil and water) separate.
A theory in contrast to the conclusions of Gibbs paradox statement can offer a perfect explanation to
these phenomena.

6.3. Deformation asenergy transduction

The mixing of fluids of very similar or identical propertiesisthe most spontaneous one as indicated by
its maximal entropy increase. We consider a model of an ideal gas as the working fluid in a balloon.
Anisobaric, isothermal and isochoric process can be characterized by Gibbs free energy increment

AG = —TAS (32)

if AH = 0. Mixing (or the combination) of indistinguishable gases, which we beieve has an entropy
increase, may be regarded as a deformation. Thisisillustrated by change of the N smaller enclosures
of identical shapesto afind total volume

N
V= Z Vi (33)
=1
of the same shapeto give
N
AS =k N In(V/Vy) (34)

=1
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Figure 9. Calculation of the entropy effect of a shape change on the system of n mol ideal gas. The particles
in the volume corresponding to ds, originally confined in an imaginary maximal inscribed sphereof radiusr, are
released into a common sphere of radius r; after the deformation

ASzg//s(lng)r-ds (35)

for the deformation from an odd-shaped balloon to give afina shape of a single sphere, wherer(s) is
the radius of the maximal inscribed sphere intersecting the interface at s on the interface, and r; isthe
radius of the fina sphere (Figure 9). The differential geometry problem will be treated in more detall
elsawhere.

If carried out reversibly, this step will perform non-expansion mechanical work in a quantity of
—AG = TAS, with AS caculated, e.g. we predict that the deformation of an idea gasin a balloon
from a shape of two identica spheres (each of 0.5V) to afinal single sphere of volume V can perform
mechanical work as great as that of an isothermal expansion from a volume of 0.5V to a final volume
V (Figure 10), with AS being calculated by Equation (34).

Gibbs statement that the deformation of afluid isimmaterial [36] isincorrect. Like the Carnot cycle,
the working substance in the balloon model is aso an ided gas. From the genera expression for the
deformation (Equation 35), AS is related to the area as well as the curvature of the flexible interface
enclosing the working gas. The isobaric, isothermal and isochoric deformation processes discussed
here are much more pertinent in the discussion of the mechanism of biological energy transduction as
encountered in muscle contraction and relaxation than that of a heat engine which converts chemical
energy to expansion work over alarge range of pressure, temperature and volume changesin processes
such as the Carnot cycle. Analogously, by consuming chemical energy, theflexible proteinsunfold and
separate in the muscle relaxation step. Muscle contraction is a process of protein folding and protein
combination to perform mechanical work.

Generdly,

6.4. Resonancetheory

Again, if weapply theterm ‘mixing’ as used by von Neumann [13] to aquantum system such as atoms
and molecules, we will find that al of the results of practical calculations must contradict with the
Gibbs paradox of mixing. However, they will conform with our conclusion, irrespective of whether the
calculations are carried out according to very approximate but useful MO (‘mixture’ of AO or other
MOs) and VB theories (mixture of several valance structures) or many sophisticated theories (mixtures
of avast number of analytical functionsto represent quantum states). Recently, the concept of mixing
VB configurations or MO configurations [37, 38] has proven useful for ducidating alarge number of
organic reactions of different types. Our theory may provide support to the validity of such principles.
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Figure10. Deformation (a) asanisobaric, isothermal and isochoric energy transduction. It can be asefficient as
an expansion (b) of an ideal gasto performan identical amount of mechanical work in a thermal engine working
over a largerange of pressure, temperature and volume changes

Because symmetry and similarity are related to entropy [1], a calculation might be simplified based
on these correl ation. Furthermore, the explanation of the results are much more clear. After theregjection
of Gibbs paradox statement, one will believe that the second law of thermodynamics can be perfectly
applied to quantum systems to judge the structura stability and process spontaneity.

7. CONCLUDING REMARKS

When we read physicists discussions about the general properties of entropy [30], we see that they
should have easily found the correlation that higher symmetry means higher entropy [1]. They failed
to discover this truly very significant and generd relation because of the prestigious Gibbs paradox
statement. Now we can call w, in the Boltzmann formula, the symmetry number only because the facts
and logical reasoning reject Gibbs paradox statement.

Much theoretical work needs to be done after the Gibbs paradox statement isregjected, and it will be
very worthwhile. So far the Gibbs paradox statement has been factually avery fundamental assumption
in statistical mechanics[4—10]; hence, it will not be asurpriseif thergection of thisstatement resultsin
tremendoustheoretical consequencesintheoretical physics, physica chemistry [39-42] and biophysics.
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