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Abstract: A wireless, passive, remote-query sensor for monitoring sodium hypochlorite

(bleach) solutions is reported. The sensor is comprised of a magnetically-soft ferromagnetic

ribbon, coated with a layer of polyurethane and alumina, having a large and nonlinear

permeability that supports higher-order harmonics in response to a time varying magnetic

field. The hypochlorite ions induce swelling in the coating, with the resultant stress altering

the harmonic signature of the sensor from which the sodium hypochlorite concentration can

be determined. The wireless, passive nature of the sensor platform enables long-term

monitoring of bleach concentrations in the environment. The sensor platform can be

extended to other chemical analytes of interest as desired.
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Introduction

Bleach, commonly a 5.75 vol% sodium hypochlorite, NaOCl, solution, is an intensively used

industrial chemical widely used for cleaning due to its properties as a disinfectant. While bleach is an

excellent cleaning solution, at high concentrations it can readily damage drainage pipes. Hence the

ability to remotely monitor sodium hypochlorite concentrations from within sealed pipes is of great

interest for ensuring environmental integrity; if excessive quantities of bleach are detected appropriate

steps can be taken to neutralize the chemical.

In this paper we present a wireless, passive sensor for in situ monitoring of sodium hypochlorite in

water. The sensor is made of a high permeability, magnetically soft, ribbon-like amorphous
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ferromagnetic alloy that supports higher-order harmonics [1-4] in response to a magnetic ac field. In

this work, two types of ferromagnetic alloys Fe40Ni38Mo4B18 (Metglas 2826MB) and

Co65Fe4Ni2Si15B14 (Metglas 2714a), from Honeywell Co. [5], are investigated. The sensors are first

coated with a layer of polyurethane to prevent rusting of the iron-rich material, followed by a layer of

alumina. The coating swells in response to changing bleach concentration, varying the stress and

hence the magnetic permeability of the sensor and consequently the relative amplitudes of the higher-

order harmonics generated by the sensor in response to an interrogation signal. Between these two

materials, Metglas 2826MB is highly sensitive to stress (and hence bleach concentration) due to its

high magnetostriction of 12 ppm. Metglas 2714a, on the other hand, has a magnetostriction of less

than 1 and is insensitive to stress. The magnetic properties of both Metglas are listed in Table 1.

Table 1. Magnetic properties of Metglas 2826MB and Metglas 2714a.

Material Hk (A/m) Hc (A/m) Bs (T) µµµµ (dc) λλλλs (ppm)

2826MB 150 4 0.88 50,000 12

2714a 60 2 0.57 80,000 -1 to 0.1

Figure 1. Experimental set up for monitoring the harmonic response of a magnetically soft

sensor.

The sensor is placed in the environment of interest as shown in Fig. 1. The sensor is excited by a

single interrogation coil, and the higher-order harmonic response is detected by a figure-8 sensing coil

coplanar with the interrogation coil. Since there is no coupling between the measured higher-order

harmonic signals and the excitation signal the background noise level is relatively small enabling a

greater detection range. Since the response is based upon the magnetic properties of the material,

sensor length does not affect the response except total signal amplitude, where a physically larger

sensor provides more signal than a physically smaller sensor. The only size restriction is when the

dimensions of the sensor are reduced to a point that the demagnetizing field (associated with all

magnetic materials) reduces the permeability of the material. The sensors used in this work,

55 mm × 6.35 mm × 30 µm, have a material cost of less than $0.005 making disposable use practical.



Sensors 2003, 3 13

The sensors were excited using a coil (36-turn, 14 gauge wire, 30 cm radius) connected to a

Wavetek 20 function generator to generate a 500 A/m 200Hz magnetic field, in series with a Kepco dc

power supply used to provide a dc biasing field of controllable amplitude. A figure-8 sensing coil

(400-turn, 40 gauge wire, 18 cm × 18 cm total area) co-planar with the interrogation coil was used to

monitor the response of the sensor, with the harmonic amplitudes captured using a HP4293B spectrum

analyzer. A computer was used to automate the experiment.

The sensor was fabricated by dip coating an as-cast Metglas 2826MB ribbon with polyurethane and

then drying at 40°C for two hours. The dip coating process was repeated three times for a total

polyurethane layer thickness of 200 µm. An alumina coating was then applied, via three separate dip

coatings, having a total thickness of approximately 50 µm. Finally the sensor was baked in an oven at

100°C for 3 hours.

Theory

The amplitude of the higher order harmonics of a ribbon-shaped soft magnetic material is dependent

upon the magnitude of the biasing field. From our previous work [6-9], the amplitude of the n-th mode

higher-order harmonics, An, as a function of biasing field Hdc is given by:

(1)

where ω is the radian frequency of the excitation field, hac is the amplitude of the ac excitation field, Bs

is the saturation induction of the magnetic material, µ is the permeability of the material, L is the
coupling between the magnetic ribbon and the detection coil, and k = hac πnBs . Eq. (1) shows the

harmonic amplitudes, regardless of the order number and the amplitude of biasing field, increase with

permeability.

When the magnetic ribbon is exposed to a longitudinal stress σ, such as the stress induced by the

swelling of the bleach-sensing layer, its anisotropy field changes [11-13]:

(2)

where λs is the saturation magnetostriction, Hk is the anisotropy field at zero stress, Hk
σ is the

anisotropy field at stress σ, and Ms is the saturation magnetization of the material ( Ms ≈ Bs for our

sensor since it has a high µ). The permeability of the sensor at stress σ is determined using the
approximation µ ≈ Bs / Hk as:

(3)

Eq. (3) shows the permeability of the magnetically soft material increases with increasing

longitudinal stress σ. The measured harmonic amplitudes at biasing field Hdc and applied stress σ are:

(4)
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From Eq. (4) it is clear the amplitudes of the higher-order harmonics increase with increasing stress.

As a result, the higher-order harmonics of the sensor is expected to increase with sodium hypochlorite

concentration since the absorption of the hypochlorite ions causes the sensing layer to swell, which

stresses the magnetic ribbon.

Our sensor is encapsulated within a thin coating of polyurethane and alumina as shown in Fig. 2.

When the sensor is immersed into a sodium hypochlorite solution, the coating absorbs the sodium

hypochlorite ions and swells introducing stress as illustrated in Fig. 2. Since the sensor has a high

aspect ratio the longitudinal stress will be much larger than the transverse stress, with the stress

changing the magnetic permeability of the sensor and in turn the relative amplitude of the different

harmonics.
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Figure 2. Schematic drawing illustrating stresses induced by coating swelling.

Results and Discussions

Fig. 3 plots the amplitudes of the 2nd and 3rd harmonics of a typical sensor as a function of dc

biasing field. To determine the maximum amplitudes of both even and odd harmonics, a dc sweep is

first performed to capture the harmonic response as a function of dc biasing fields. A peak-finding

routine is then used to determine the maximum amplitude for each harmonic.
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Figure 3. The measured amplitude of the 2nd and 3rd harmonics versus amplitude of the dc

magnetic biasing field.
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The 2826MB sensor was tested by immersion in a 5.75% sodium hypochlorite (commercially

available bleach [14]) and deionized water. Before each experiment started the sensor was presoaked

in water for 2 hours to eliminate any amplitude variations caused by the absorption of water molecules,

and the associated stress, by the coating. Fig. 4 plots the variation in the 2nd and 3rd harmonic

amplitudes when a dry sensor was immersed in deionized water. As shown in the plot, the maximum

amplitudes of the higher-order harmonics increased and then saturated at constant values after 2 hours.

0.55

0.6

0.65

0.7

0.75

0.8

0 20 40 60 80 100 120

2nd Harmonic

3rd Harmonic

H
ar

m
on

ic
A

m
pl

it
ud

e
(m

V
)

Time (minutes)

Figure 4. Measured variation in the 2nd and 3rd harmonic amplitudes when a dry sensor was

immersed in deionized water.
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Figure 5. The changes in the 2nd and 3rd harmonic amplitudes when a sensor was cycled

between deionized water and 5.75% sodium hypochlorite.

Fig. 5 plots the amplitudes of the 2nd and 3rd harmonics when the 2826MB sensor was cycled

between deionized water and 5.75% sodium hypochlorite solution after the sensor was presoaked in

water for 2 hours. The measured harmonic amplitudes decrease with each bleach/water cycle,

indicating a decrease in coating swelling. The variation in the measured 2nd and 3rd harmonic
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amplitudes between the two test liquids were, respectively, 0.03 mV and 0.027 mV, or about 3.7% of

the measured signal amplitudes. Fig. 6 shows the sensor was able to measure the concentration of

hypochlorite solution diluted in water at varying concentrations; the sensors were immersed in the test

solution for thirty minutes and then measured. The sensor responded linearly to bleach concentration,

with a high/low hysteresis of less than 10%.

a)

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0 60 120 180 240

M
ax

im
um

A
m

pl
it

ud
e

of
2nd

H
ar

m
o

ni
c

(m
V

)

M
axim

um
A

m
plitu

de
of

3
rd

H
arm

onic
(m

V
)

Time (minutes)

0%

25%

50%

75%

100%

75%

0%

25%

50%

b)

0.65

0.7

0.75

0.8

0 1 2 3 4 5 6

Increasing Concentration
Decreasing Concentration

A
m

pl
itu

de
of

2nd
H

ar
m

on
ic

(m
V

)

Sodium Hypochloride Concentration (%vol)

Figure 6. (a) The harmonic amplitudes of the sensor when it was exposed to different sodium

hypochlorite concentrations. The numbers in the figure are the concentrations of sodium

hypochlorite in water. (b) The sensor shows a linear response towards bleach, and the

hysteresis between increasing and decreasing concentration is less than 10%.
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Figure 7. The 2nd and 3rd harmonic amplitudes stayed constant when the sensor was cycled

between water and water containing 5.2 g/l sodium chloride (NaCl).

Fig. 7 shows the response of the 2826MB sensor when cycled between deionized water and water

containing salt (sodium chloride 5.2 g/l). As shown in the plot, the sensor is insensitive to chloride

ions.
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Eq. (4) indicates that the stress-response of the sensor is proportional to the magnetostriction of the

sensor material λs. Hence, the sensitivity of the sensor should increase with λs of the sensor material.

Fig. 8 plots the response when a sensor made of Metglas 2714a (Co65Fe4Ni2Si15B14, see Table 1 for its

magnetic properties) was cycled between deionized water and the sodium hypochlorite solution. Since

Metglas 2714a has a magnetostriction of less than 1 ppm, in contrast to Metglas 2826MB with

magnetostriction of 12 ppm, it is insensitive to chlorine as indicated in the plot.
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Figure 8. The 2nd and 3rd harmonic amplitudes remained unchanged when a sensor made of

Metglas 2714a was cycled between deionized water and 5.75% sodium hypochlorite. This

sensor is insensitive to bleach since Metglas 2714a has a low magnetostriction of less than

1 ppm.

Conclusions

A wireless sensor useful for monitoring sodium hypochlorite concentrations has been presented.

The sensor is a magnetically soft ribbon that supports higher-order harmonics the characteristics of

which change with stress. The sensor is coated with a layer of polyurethane and alumina, the bleach

dependent swelling of which induces stress in the sensor changing the amplitudes of the higher order

harmonics. The sensor is interrogated through an excitation coil that generates a fixed-frequency ac

field mixed with a dc field of varying amplitude. The harmonic response of the sensor as a function of

dc biasing field is captured with a figure-8 detection coil, and the peak of each harmonic is determined

for tracking bleach concentration. A theoretical model is presented to explain how the absorption of

hypochlorite ions by the alumina coating creates stresses on the sensor affecting the higher-order

harmonic response. Experimental results show the harmonic sensor is sensitive to sodium

hypochlorite, a corrosive chemical, but does not respond to salt water containing sodium chloride. We

have also shown a magnetically soft ribbon with large magnetostriction is needed for high sensitivity.

The sensor is remotely detected, so it can operate inside a confined place, such as a PVC or

concrete sewer pipe, without any electrical connections. The sensor is passive; hence there are no
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battery lifetime issues. It should be noted that although the sensor can be operated in the vicinity of

magnetic objects, its accuracy will be reduced due to interference from the stray magnetic fields.
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