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Abstract: This paper discusses possible methods for on-chip fluorescent imaging for 
integrated bio-sensors. The integration of optical and electro-optical accessories, according 
to suggested methods, can improve the performance of fluorescence imaging. It can boost 
the signal to background ratio by a few orders of magnitudes in comparison to conventional 
discrete setups. The methods that are present in this paper are oriented towards building 
reproducible arrays for high-throughput micro total analysis systems (µTAS). The first 
method relates to side illumination of the fluorescent material placed into micro-
compartments of the lab-on-chip. Its significance is in high utilization of excitation energy 
for low concentration of fluorescent material. The utilization of a transparent µLED chip, 
for the second method, allows the placement of the excitation light sources on the same 
optical axis with emission detector, such that the excitation and emission rays are directed 
controversly. The third method presents a spatial filtering of the excitation background. 

Keywords: Fluorescence, imaging, lab-on-chip, µfluidic, lenslet array, µLED chip, image 
sensor, biosensor. 
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Introduction 

A variety of bio-sensing schemes have been developed for biotechnology applications such as 
genomics, health diagnostics, in vivo/vitro sensing, chemical and biological hazards detection, 
environmental control, etc. One of those applications is the fluorescence detection which is offering 
several advantages such as sensitivity and specificity. Currently, a fluorescence-based instrumentation 
is complicated, expensive and not compact enough to be used in field-deployable applications that are 
becoming more and more desired on consumer and military markets. Therefore, the research and 
development of integrated, low cost, compact, high-throughput and sensitive bio-fluorescence 
integrated systems is very important. 

Any fluorescence-based technology requires an excitation light source, emission detector and 
additional optical components such as optical filters, waveguides, mirrors, etc. Optical filters are 
required to prevent the excitation light rays reaching the emission detector. Unfiltered excitation rays 
are creating an “excitation background” that can be the limiting factor that determines the sensitivity of 
the fluorescence-based detection system. 

A simple method to significantly decease the excitation background is by positioning a directed 
excitation light source off-axis, i.e. it is on an axis not intersecting with the emission detector. 
Evidently, there are two such possible configurations: (i) the excitation rays are perpendicular to 
emission rays; and (ii) both excitation and emission rays are on the same optical axis directed 
controversially. However, the implementation of those configurations in a miniature high-throughput 
integrated system is challenging as it requires a complicated optical paths design and special alignment 
requirements that affect the system size, complexity and cost. 

The monolithic integration of vertical cavity surface emitting lasers (VCSELs) with PIN photo-
detectors is a very promising method for fluorescence-based imaging [1,2]. It allows the 
miniaturization and dramatic increases of simultaneous bio-chemical reactions monitoring. However, 
this method is limited to Infra-Red (IR) and near IR spectra due to the physical properties of the 
VCSEL technology. Actually, it implements a single pixel fluorescent microscope that cannot perform 
imaging of the corresponding laboratory chamber. A variety of other integrated fluorescence sensing 
systems have been realized in the literature [3-9]. 

Although the aforementioned methods and technologies exhibit significant progress toward a new 
generation of integrated biosensors, they have a variety of limiting factors such as: cost effectiveness, 
dimensions, throughput, wavelength spectrums and sensitivity. The innovative methods [10] presented 
in this paper show how to overcame those limitations by implementation a miniature, low cost, high-
throughput, and sensitive lab-on-chip integrated system. They are taking advantage of micro-
fabrication technologies based on available and low cost components that can be manufactured in mass 
production. Each integrated device incorporates various components such as (i) image sensor that 
could be based on either CMOS or CCD technology; (ii) lenslet (micro lens) arrays, and (iii) 
microfluidics (µfluidic) lab-on-chip that is made of polymeric material. The excitation light differs 
through the discussed methods that are (i) µLED chip devices, (ii) “V-groove optical fibers” with light 
splitters integrated inside the µfluidic lab-on-chip, and (iii) an optical fibers monolithic bundle. 

In this paper we are presenting three setups. The first one relates to a side illumination of the 
fluorescent material placed into micro-compartments of the lab-on-chip. Its significance is in the high 
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utilization of the excitation energy for low concentration of the fluorescent material. The utilization of 
a transparent µLED chip, for the second method, allows the placement of the excitation light sources 
on the same optical axis with emission detector, such that the excitation and emission rays are directed 
controversly. The third method presents a spatial filtering of the excitation background. 

For each of those three methods, each one of the lab chambers is represented by an addressable 
region on the image sensor. For the sensors of a particular lab chamber emitting an optical signal, the 
image sensor is forming the image at the respective addressable region. The possibility to get an image 
of the lab chamber rather than just the optical emission signal intensity is an added value for the 
fluorescence-based µTAS. Since the object could be magnified by a corresponding µlens, the setup 
could be utilized as an array of microscopes. The reliability of the signal is much higher since not just 
the average response is measured, but also the distribution of activities of the sensors could be 
analyzed. 

The utilization of the presented methods / setups could significantly improve the scientific and 
industrial fluorescence-imaging platforms based on µTAS. The improvements are reflected in an 
extremely high sensitivity, high throughput, miniaturization and costs reduction. The work could be 
used as reference for scientists and engineers developing novel photonic applications. 

Descriptions of the methods 

Introduction 

In this chapter, we are describing and visualizing each one of the discussed methods. The method 
utilizing side excitation by means of optical fibers is presented in the following section. The section 
“Transparent µLED chip 180º utilization” is used to suggest an innovative setup based on a µLED chip 
and optics shared for excitation and emission. The conventional setup with modification of excitation 
spatial filtering is introduced in the section “Spatial filtering of the excitation background” 

Side illumination of the fluorescence imaging lab-on-chip 

The first method utilizes waveguides for side illumination of the fluorescent material placed into 
micro-compartments of the lab-on-chip as envisaged in Figure 1. 

V-groove 
Optical Fiber 

Image 
Sensor 

Mirror 
coating 

(A) (B) 

(C)

(D) 

Optical 
Separator

Lenslet 
array

Emission 
Filter 

Fluorescent 
material Lab-on-Chip

Fluidic 
Channel 

Lab
Chambers

Lab 
Chambers

Fluidic 
Channel 

Excitation 
Rays 

Single 
excitation 
ray path 

Fluidic 
Via 

Emission 
rays 

Excitation 
Light Entries Light 

Splitting 
Junction 

Figure 1. Side illuminated fluorescence imaging lab-on-chip array. 
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The waveguides can be integrated with or formed in a body or substrate of the lab-on-chip device. 
Alternatively, the lab-on-chip device may be manufactured with a plurality of grooves sizewise 
compatible with waveguides inserted into the grooves. This embodiment is particularly useful when 
the lab-on-chip device is made of a disposable material and it is desired to keep waveguides for 
additional uses, once the device is discarded. As shown in Figure 1-A, V-groove optical fibers or 
simply waveguides are multi-furcated, having a plurality of light-splitting junctions, such that the 
excitation light enters through a single primary waveguide, and is distributed by light-splitting 
junctions to secondary waveguide. Each light splitting junction is designed to satisfy the numerical 
apertures of its outgoing waveguide. Waveguides may also be arranged in several multi-furcated trees, 
so that the excitation light can enter the device through several primary waveguides, where each tree is 
dedicated to a particular excitation wavelength. 

The waveguides distribute the light in a manner such that the impingement of the excitation light on 
a fluorescence material is maximized, while the interaction with the light detector, or image sensor, is 
minimized. This can be better understood from Figure 1-C, D which illustrates a side view (Figure 1-D) 
and a top view (Figure 1-C) of one waveguide-guiding light into the lab chamber. The minimization of 
the interaction of the excitation light with the image sensor is achieved by imposing a substantially 
parallel propagation direction on the excitation light relatively to the surface. The lab chamber 
comprises a reflective coat covering the walls, reflecting the excitation light and hence, further 
increasing the impingement of the excitation rays with the fluorescence material.  

While the excitation light is constrained to propagate in a predetermined direction (see Figure 1-B), 
the optical signal, generated by the fluorescent material, propagates in all directions. The bottom side 
of chamber is not coated and therefore, the optical signal projected onto the image sensor without 
being screened by the excitation light, is substantially confined in the chamber. It is appreciated, 
however, that the excitation light can be diverted, for example, when not absorbed by the fluorescence 
material but rather being scattered to a different direction. Therefore, an emission filter is positioned in 
the light path of optical signal preventing the diverted rays of excitation light from arriving to the 
image sensor, while it allows the transmission of the optical signal substantially without loses. The 
optical signals generated in different reaction chambers are spatially separated so as to prevent cross 
talks between the different optical signals. The imaging, rather than the signal-intensity measurement, 
is performed by means of an optical focusing device (e.g., a microlens) in the light path of the optical 
signal. 

We can summarize that the significance of the method is in a high utilization of the excitation 
energy for a low concentration of the fluorescent material. The secondary significance is a very low 
excitation background projected into the image sensor. 

Transparent µLED chip 180º utilization 

The placement of the transparent “micro Light Emiting Device” (µLED) chip, between the lab-on-
chip and the imaging device, allows the placement of the excitation light sources on the same optical 
axis with the emission detector. The excitation and emission rays are directed controversly as 
visualized on Figure 2-A,B correspondingly.  

The main element of the currently discussed µTAS is a µLEDs chip. It is a matrix of µLEDs grown 
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on a transparent substrate. It is an inexpensive device and could be configured to emit any visible or 
near infra-red light. Each µLED could be addressable, like a Read Only Memory (RAM), and is 
therefore activated independently. The arrangements of the µLEDs are compatible with the 
arrangement of µlenses of a lenslet array. The transverse size of each light-emitting device is typically 
15 µm. Dimensions of the µlens correspond to the aperture of the lab chamber and could vary in the 
range 250 µm – 2 mm. Therefore, the µLED could be referred as a point-light source. 
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Figure 2. Transparent µLED chip 180º utilization with lab-on-chip array. 

Figure 2-A shows one LED and one lens, respectively. The image sensor is connected to an 
emission filter preventing randomly reflected excitation rays from penetrating therethrough. The LED 
generates an excitation light in a direction opposite to the image sensor by means of a reflector. The 
reflector doubles the excitation intensity as illustrated in Figure 2-C,D. As shown in Figure 2-A, each 
LED is positioned at the focal point of the corresponding lens, so that the collimated excitation light 
impinges the fluorescent material located inside the lab chambers by parallel rays. 

Figure 2-B shows the light path of the optical emission signals, emitted by the fluorescent material. 
The same lens is positioned in a manner such that the optical signals are focused by the lens to impinge 
on the image sensor. The positioning could be half way between the image sensor and lab-on-chip, at 
two focal distances therefore, providing an unity zoom. Other distances are possible in order to 
perform an image magnification. Being emitted at a plurality of directions, the most portion of the 
emission arriving the lens is not affected by reflector. 

Spatial filtering of the excitation background 

The excitation background spatial filtering (EBSF) method can theoretically completely obstruct the 
excitation rays to reach the emission detector. It requires excitation light sources providing parallel 
rays that, for instance, could be carried out from a piggy-tailed optical fibers bundle. 

Like in the section before, the µlenses of the lenslet array are used for the separation of the 
excitation light from the emission signal. This can be better understood from Figure 3, which is a 
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simplified illustration of the excitation and emission lights paths. When the excitation light (see Figure 
3-A) enters the lab chamber it can (i) be absorbed by the fluorescence material which in response emits 
the optical signal; (ii) scatter off the fluorescence material and continue to propagate in a diverted 
direction; or (iii) continue to propagate in its original direction without interacting with any substance.  
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Figure 3. Excitation background spatial filtering. 

The option (iii) is the most prevalent. The lens is positioned in a manner such that the parallel, non-
interacting, light rays are concentrated to its focal point. An opaque object or a reflector is positioned 
in the focal point of the lens, absorbing or reflecting the excitation rays hence preventing them from 
arriving to the image sensor. The reflector is sufficiently small so as not to absorb or reflect off-focal 
rays. Unlike the excitation light, the emission signals (see Figure 3-B) are emitted and propagated in a 
plurality of directions, so that only a small portion is blocked. Being sufficiently small, the effect of 
reflector is negligible for the emission rays. The excitation rays of low prevalence (kind ii) are 
absorbed by an emission filter adjacent to the image sensor. The performance could be further 
improved, placing the excitation filter before the lenslet array, however, it will reduce the mechanical 
separation of the crosstalk signals. 

Discussion 

The aforementioned methods were developed for non-specific toxicants detection using a cell on 
chip concept. One application is for water-toxicity detection. In this application, a genetically 
engineered bacterium (E. Coli) generating green fluorescent proteins (GFP) was used as biological 
sensor. The bacteria were uniformly distributed inside the lab chamber, synthesing GFP as a response 
on a certain analyte exposed to. The biological activity is exponentially faded when the bacteria 
concentration is above some optimum. Unfortunately, the optimal concentration was a quite low, 
therefore, the fluorescent signal was very small. Due to the biological constraints, the conventional 
setup was found as not sensitive enough for a µTAS [11]. 

Each one of the methods presented in that work was expected to significantly increase the 
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fluorescence signal with regard to the background sensitivity, relatively to conventional techniques 
used in our research. However, bioluminescence-based biosensors were found as preferable due to a 
faster detection response for the target analytes. Therefore, the supposed methods were not reduced to 
practice, since we switched our research activities toward µTAS, based on bioluminescence-based 
reporters. 

Summary and conclusions 

In this work three advanced methods for fluorescence based µTAS have been suggested. The 
significance of the first one is in the high utilization of the excitation energy for low concentrations of 
the fluorescent material. The utilization of a transparent µLED chip, for the second method, allows the 
placement of the excitation light sources on the same optical axis with emission detector, such that the 
excitation and emission rays are directed controversy. The third method presents a spatial filtering of 
the excitation background. 

Despite of that the methods were not implemented, the first one prospected to be the best, since 
theoretically it utilizes all the excitation energy. However, it requiring more complicated lab-on-chip, 
since the excitation waveguides should be squeezed with other ingredients such as, for instance, 
µfluidic channels. 

The implementation of any of the proposed methods is not a trivial issue. The selection of the 
preferable method strongly depends on the application. Although, a practical approach of the 
suggested method could be a challenging task, our main conclusion is that the set-up must be 
significantly improved in the performance and effectiveness to achieve a fluorescence-based µTAS.  
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