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Abstract: This paper presents a two-dimensional-in-space mathematical model of 
biosensors based on an array of enzyme microreactors immobilised on a single electrode. 
The modeling system acts under amperometric conditions. The microreactors were modeled 
by particles and by strips. The model is based on the diffusion equations containing a non-
linear term related to the Michaelis-Menten kinetics of the enzymatic reaction. The model 
involves three regions: an array of enzyme microreactors where enzyme reaction as well as 
mass transport by diffusion takes place, a diffusion limiting region where only the diffusion 
takes place, and a convective region, where the analyte concentration is maintained constant. 
Using computer simulation, the influence of the geometry of the microreactors and of the 
diffusion region on the biosensor response was investigated. The digital simulation was 
carried out using the finite difference technique. 
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Introduction 

Biosensors are sensors that use biological components, usually enzymes, which catalyse the 
interaction with an analyte [1-3]. The amperometric biosensors measure the Faradaic current that 
arises on a working indicator electrode by direct electrochemical oxidation or reduction of the products 
of the biochemical reaction [4,5]. In amperometric biosensors the potential at the electrode is held 
constant while the current is measured. Amperometric biosensors are known to be reliable, cheap and 
highly sensitive for environment, clinical and industrial purposes [6,7]. 

In some applications of biosensors, enzymes are archival and only available in every limited 
quantity or are the products of combinatorial synthesis procedures and thus, are only produced in 
microgram to milligram quantities. These include point-of-care testing [8], high throughput drug 
discovery [9], detection of biological warfare agents [10], astrobiology [11] and others. Such 
applications of biosensors require high-density arrays of microvolume reaction vessels. Because of this, 
miniaturization of biosensors is a very important trend in biotechnology. The application of arrays of 
microreactors is one way of miniaturization. 

Since it is not generally possible to measure the concentration of a substrate inside enzyme domains 
with analytical devices, starting from seventies various mathematical models of amperometric 
biosensors have been developed and used as an important tool to study and optimise analytical 
characteristics of actual biosensors [12-16]. The goal of this investigation is to make a model allowing 
an effective computer simulation of a biosensor system based on an array of enzyme microreactors 
immobilised on a single electrode.  

The developed model is based on diffusion equations [17,18], containing a non-linear term related 
to the Michaelis-Menten kinetics of the enzymatic reaction. The model involves three regions: an array 
of microreactors where enzyme reaction as well as mass transport by diffusion takes place, a diffusion 
limiting region where only the diffusion takes place, and a convective region, where the analyte 
concentration is maintained constant. The enzyme microreactors were modeled by identical particles 
(right cylinders) and by strips (right longitudinal quadrangular prisms) distributed uniformly on the 
electrode surface.  

Using a computer simulation the influence of the geometry of the microreactors as well as of the 
diffusion region on the biosensor response was investigated. The computer simulation was carried out 
using the finite difference technique [19]. 

Principal structure 

We investigate two shapes of the enzyme microreactors immobilised on a single electrode. In the 
case of the first type of the biosensor geometry, the microreactors were modeled by identical enzyme 
filled right cylinders. Fig. 1a shows a biosensor system, where the enzyme cylinders of radius a and 
height c are arranged in a rigid hexagonal array. The distance between the centres of two adjacent 
cylinders equals 2b. 
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Figure 1. Principal structures of arrays of enzyme microreactors immobilised on a single electrode and 
the profile at Y-plane (c). The microreactors are modeled by identical cylinders (a) and by strips (b). 
The figure is not to scale. 

Assuming the uniform distribution of the enzyme microreactors on the electrode surface, the 
biosensor may be divided into equal hexagonal prisms with regular hexagonal bases. For simplicity, it 
is reasonable to consider a circle of radius b whose area equals to that of the hexagon and to regard of 
one of the cylinders as a unit cell. Due to the symmetry of the unit cell, we may consider only a half of 
the transverse section of the unit cell. We assume also that the mass transport during the biosensor 
action obeys a finite diffusion regime. The profile of the biosensor at Y-plane is depicted in Fig. 1c. A 
very similar approach has been used in modeling of partially blocked electrodes [20,21] and in 
modeling of surface roughness of the enzyme membrane [22]. 

In the second case the microreactors were modeled by identical strips distributed uniformly on the 
electrode surface. Fig. 1b shows a biosensor, where enzyme microreactors are right quadrangular 
prisms of base 2a by c distributed uniformly so, that the distance between adjacent prisms equals to 
2(b − a). Due to the uniform distribution of the enzyme strips, it is reasonable to consider only a unit 
consisting of a single strip together with the region between two adjacent strips. Because of the 
symmetry and the relatively great length of the unit cell we may consider only the transverse section of 
a half of the unit. Fig. 2c represents the profile also for that kind of microreactors. 

Mathematical model 

Consider a scheme where the substrate (S) is enzymatically converted to the product (P) [3], 

 PS E⎯→⎯ . (1) 

We have discussed two different types of the geometry of the enzyme microreactors: cylinders and 
strips. However, the profile at Y-plane (Fig. 1c) is the same for both types of the microreactors. 
Nevertheless, the corresponding mathematical models have to be formulated differently. In the case of 
the cylinders (Fig. 1a), we formulate a two-dimensional-in-space (2-D) model in cylindrical 
coordinates, while in the next case (Fig. 1b) we formulate 2-D model in Cartesian ones. 

In the profile (Fig. 1c), parameter b stands for the half width (radius) of the entire unit cell, while a 
stands for the half width (radius) of the enzyme microreactor. c is the height of the microreactor. The 
fourth parameter d is the thickness of the diffusion layer. 

The diffusion region surrounding the microreactors is known as the Nernst diffusion layer [23]. 
According to the Nernst approach, the diffusion takes place in a finite layer of the buffer solution.  
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Away from it, the solution is in motion and uniform in concentration. The thickness of the Nernst 
layer remains unchanged with time. If a substrate is well-stirred and in powerful motion, then rather 
often the Nernst diffusion layer is neglected [13,24]. However, in practice, the zero thickness of the 
Nernst layer can not be achieved [5,23]. Because of this, we assume that the mass transport during the 
biosensor action obeys a finite diffusion regime. 

Let Ω and Ω0 be open regions corresponding to the entire domain to be considered and enzyme 
region, respectively, and Γ - the bulk solution/enzyme border, 
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where x and z stand for the space in both systems of coordinates: Cartesian and cylindrical. 

Let Ω  and 0Ω  denote the corresponding closed regions. Coupling the enzyme-catalysed reaction in 

the enzyme region with the two-dimensional-in-space mass transport by diffusion, described by Fick’s 
law, leads the system of the reaction-diffusion equations (t > 0), 
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where t stands for time, ∆ is the Laplace operator, Se(x, z, t), Sb(x, z, t), (Pe(x, z, t), Pb(x, z, t)) are the 
substrate (reaction product) concentrations in the enzyme and bulk solution, respectively, De, Db are 
the diffusion coefficients, Vmax is the maximal enzymatic rate and KM is the Michaelis constant. The 
expression of the Laplace operator depends on the system of coordinates [17]. 

In the domain presented in Fig. 1c, z = 0 represents the electrode surface, and Γ corresponds to the 
bulk solution/enzyme interface. The biosensor operation starts when the substrate appears over the 
surface of the enzyme region. This is used in the initial conditions (t = 0), 
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where S0 is the concentration of substrate in the bulk solution. 
The following boundary conditions express the symmetry of the biosensor: 
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In the scheme (1) the product (P) is an electro-active substance. The electrode potential is chosen to 
keep the zero concentration of the product at the electrode surface. The substrate (S) does not react at 
the electrode surface. This is used in the boundary conditions (t > 0) given by 
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On the surface Γ we define the matching conditions (t > 0), 
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where n stands for the normal direction. 
In a special case when a = b, the model (3)-(8) describes an operation of flat membrane biosensors 

[2,3,25]. 
The measured current is accepted as a response of a biosensor in a physical experiment. The current 

depends upon the flux of the electro-active substance (product) at the electrode surface, i.e. on the 
border z = 0. Consequently, the density i(t) of the biosensor current at time t can be obtained explicitly 
from the Faraday's and Fick's laws. In the case of the Cartesian coordinates, i(t) is expressed as follows:  
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where ne is a number of electrons involved in a charge transfer, and F is the Faraday constant. The 
following expression defines i(t) in the case of the cylindrical coordinates: 
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where ϕ is the third cylindrical coordinate. 
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We assume, that the system (3)-(8) approaches a steady-state as t → ∞ 

),(lim tii
t ∞→∞ =  (11) 

where i∞ is the steady-state biosensor current.  

Digital simulation 

Close mathematical solutions are not usually possible when analytically solving multi-dimensional 
non-linear partial differential equations with complex boundary conditions. Therefore, the problem 
was solved numerically [18,24]. The finite difference technique was applied for discretization of the 
mathematical model [19]. 
We introduced an uniform discrete grid in all directions: x, z and t [22,25,26]. Using the alternating 
direction method, an implicit finite difference scheme has been built as a result of the difference 
approximation of the model. The resulting systems of linear algebraic equations were solved 
efficiently because of the tridiagonality of their matrices. Having a numerical solution of the problem, 
the density of the biosensor current was calculated easily. The software was programmed in JAVA 
language [27]. 

The mathematical model as well as the numerical solution of the model was evaluated for different 
values of the maximal enzymatic rate Vmax, substrate concentration S0 and the geometry of the enzyme 
microreactors. 

We assumed the upper layer of the thickness δN = d - c from the enzyme region as the Nernst 
diffusion layer. The thickness δN of the Nernst layer depends upon the nature and stirring of the buffer 
solution. Usually, the more intensive stirring corresponds to the thinner diffusion layer. In practice, the 
zero thickness of the Nernst layer can not be achieved. In a case when the solution to be analysed is 
stirred by rotation of the enzyme electrode, the thickness δN of the Nernst diffusion layer may be 
minimized up to 0.02 mm by increasing the rotation speed [5,23]. That thickness of the Nernst layer, 
δN = d - c = 0.02 mm, we used to simulate the biosensor action changing other parameters. 

The following values of the parameters were default in the numerical simulation of all the 
experiments: 
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The steady-state biosensor current i∞ (the biosensor response) as well as the time moment of 
occurrence of the steady-state current (response time) were assumed and analysed as ones of the most 
important characteristics of biosensors. 

In digital simulation, the biosensor response time was assumed as the time when the absolute 
current slope value falls below a given small value normalised with the current value. In other words, 
the time needed to achieve a given dimensionless decay rate ε is used: 

⎭
⎬
⎫

⎩
⎨
⎧

<=
>

ε
t
ti

ti
tt

ti d
)(d

)(
1:min

0)(R . (13) 



Sensors 2006, 6 459 
 

 

Consequently, the current at the response time tR was assumed as the steady-state biosensor current 
i∞. In calculations, we used ε = 10-4. However, the response time tR as an approximate steady-state 
time is very sensitive to the decay rate ε, i.e. tR → ∞, when ε → 0. Because of this, we employed a half 
of steady-state time to investigate the behaviour the response time [17]. The resultant relative output 
signal function i*(t) can be expressed as follows: 

RRR ),(,)()(* iitii
i
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R

R ≈=
−

= ∞ , (14) 

where i(t) is the output current density at time t as defined in (9) and (10), iR is assumed as the steady-
state current i∞ . Let us notice, that 0 ≤ i*(t) ≤ 1 at all t ≥ 0, i*(0) = 1 and i*(tR) = 0. Let t0.5 be the time 
at which the reaction-diffusion process reaches the medium, called half-time of steady-state or, 
particularly, half of the time moment of occurrence of the maximal current, i.e., i*(t0.5) = 0.5. 

The adequacy of the mathematical and numerical models was evaluated using known analytical 
solutions for amperometric biosensors with a single flat enzyme layer. At relatively low concentrations 
of the substrate, S0 << KM, the steady-state current can be calculated as follows [12]: 
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where c is the thickness of the enzyme layer. The dimensionless factor σ2 is known as the diffusion 
modulus (Damköhler number) [17,18]. In the case of flat biosensors the diffusion modulus σ2 
essentially compares the rate of enzyme reaction (Vmax/KM) with the diffusion through the enzyme 
layer (c2/De). The biosensor response is known to be under diffusion control when σ2 >> 1. If σ2 << 1, 
then the enzyme kinetics predominates in the response. The model (3)-(8) is applied to the enzyme 
membrane biosensors when a = b is assumed.  

In the case of very high substrate concentration, S0 >> KM, the stationary current is expressed as 
follows [28]: 

2
maxe cFVn

i =∞ . (17) 

The numerical solution of the model (3)-(8) was compared with the analytical ones (15) and (17), 
accepting a = b = c = d = 0.1 mm at various values of Vmax: 1, 10, 100, 1000 µM/s and two values of S0: 
10-8, 0.1 M. In all the cases, the relative difference between the numerical and analytical solutions was 
less than 1%. 

Results and discussion 

Using numerical simulation, the influence of the geometry of the enzyme microreactors on the 
steady-state current was investigated. Firstly, we calculated values of the biosensor current at different 
values of the half-width a of the enzyme microreactors keeping all other parameters constant. Fig. 2 
shows the dynamics of the biosensor current i at the height c = 0.1 mm of the microreactors, b = 2c = 
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0.2 mm, d = c + δN = 0.12 mm, Vmax = 100 µM/s, S0 = 20 µM and five values of the half-width a of the 
microreactors: from 0.2b to b. The enzyme microreactors were modeled by cylinders (Fig. 2a) and by 
strips (Fig. 2b). 

One can see in Fig. 2, that the half-width a of the enzyme microreactors significantly effects the 
biosensor current i as well as the response time. In the case of continuous membrane (a = b = 0.2 mm), 
the biosensor current is a monotonous increasing function of time t. However, when a < b, i is a non-
monotonous function of t. Fig. 2 shows, that the steady-state biosensor current is also a non-
monotonous function of a. To investigate that effect in details we calculate the steady-state current iR 
at different values of the half-width b of entire unit changing the half-width a of the microreactor. To 
compare the response of a biosensor based on an array of the microreactors (a < b) with the response 
of the corresponding flat (membrane) biosensor (a = b), we introduce the normalised steady-state 
current iN(θ) as a function of the degree θ of the electrode surface coverage, 

10,
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where iR(θ) ≈ i∞(θ) is the steady-state biosensor current calculated at the degree θ of the coverage, 0 < 
θ ≤ 1. The dimensionless degree θ was expressed as the area of the bases of all enzyme microreactors 
divided by the area of the whole electrode surface. The case when θ  = 1 corresponds to a flat 
biosensor, i.e. fully covered by enzyme mono-layer. In the case when microreactors are modeled by 
cylinders (Fig. 1a), θ = a2/b2, and θ = a/b in the case of strips (Fig. 1b). 
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Figure 2. The dynamics of the biosensor current i at different values of a (mm) of the half-width of the 
microreactors in the cases of cylinders (a) and strips (b), b = 0.2, c = 0.1, d = 0.12 mm, Vmax = 
100 µM/s, S0 = 20 µM/s.  

Fig. 3 shows the normalised steady-state current iN versus the degree θ of the electrode coverage at 
four values of b and two values of the height c of the microreactors, d = c + 0.02 mm, Vmax = 100 µM/s, 
S0 = 20µM. 

One can see in Fig. 3, in the case of c = 0.1 mm, the steady-state current is a non-monotonous 
function of the degree θ of the electrode coverage. At 10 times smaller value of c the normalised 
current iN increases monotonously at 0 < θ ≤ 1. This property is valid for both systems of coordinates: 
cylindrical and Cartesian. In the case of c = b = 0.1 mm, the relative difference between steady-state 
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current at θ = 0.5 and another one at θ = 1 exceeds 30% in the case of cylinders (Fig. 3a) and exceeds 
20% in the case of strips (Fig. 3b). The shape of corresponding curves is very similar for both systems 
of coordinates. Let us notice, that the volume of enzyme microreactors is directly proportional to the 
degree θ, when the height c of the microreactors is kept constant. Although, the biosensor, based on an 
array of microreactors, is of less enzyme volume (θ < 1) than the corresponding membrane one (θ = 1), 
the array biosensor can generate an even higher steady-state current than the membrane one. 
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Figure 3. The normalised steady-state current iN versus the degree θ of electrode coverage at different 
values of the height c of the microreactors and the half distance b between centres of the adjacent 
microreactors in the cases of cylinders (a) and strips (b), d = c + 0.02 mm; other parameters are the 
same as in Fig. 2. 

The variation of the half-width b of the entire unit keeping θ and c constant does not change the 
volume of the microreactors. Since iN varies with b (Fig. 3), the biosensor response depends also on 
the shape of the enzyme microreactors not only on their volume. The smaller value of b corresponds to 
the denser distribution of the enzyme microreactors on the electrode surface. The denser microreactors 
are distributed the higher the steady-state current is generated. 

The biosensor response considerably depends on the fact that either the enzyme kinetics or the mass 
transport predominate in the biosensor response [2,3,26]. Assuming the continuous enzyme layer (a = 
b) of thickness c = 0.1 mm, the diffusion modulus σ2, calculated at Vmax = 100 µM/s and values given 
in (12), equals approximately to 33.3, i.e. the biosensor response is under diffusion control. While at 
ten times smaller value of c (0.01 mm), σ2 equals approximately to 0.33 and consequently the enzyme 
kinetics controls the biosensor response. According to Fig. 3 the steady-state current is a non-
monotonous function of the degree θ of the electrode coverage when σ2 > 1, i.e. when the biosensor 
response is significantly under diffusion control. Additional calculations approved this property.  

One can see from (9) and (10) that the biosensor current depends on the internal diffusion 
coefficient De as well as the external one Db. In calculations above, assuming the mass transport in 
bulk solution is faster than in enzyme, we used Db = 2De as defined in (12). This assumption is not 
firmly grounded [29]. Because of this, we calculated steady-state currents for two more values of the 
external diffusion coefficient Db: De and 4De. Fig. 4 shows the normalised steady-state current iN 
versus the degree θ of the electrode coverage at b = c = 0.1 mm, d = c + 0.02 mm, S0 = 20 µM, and two 
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maximal enzymatic rates Vmax: 10, 1000 µM/s. Fig. 4 shows the valuable influence of the external 
diffusion coefficient Db on the biosensor response. The non-monotony of the normalised steady-state 
current is observed at Db > De only. The higher the coefficient of the external diffusion is the higher 
the amplification of the signal is observed due the suitable geometry of the microreactors. The 
biosensor based on an array of microreactors can generate higher steady-state current than the 
corresponding membrane one only if it operates in bulk solution having diffusion coefficient higher 
than the diffusion coefficient in the enzyme. Since the higher maximal enzymatic rate influences the 
higher diffusion modulus σ2, the effect of the signal amplification is more notable at Vmax of 1 mM/s 
rather than at Vmax = 10 µM/s. 

Using computer simulation we have investigated the dependence of the steady-state biosensor 
current as well as biosensor response time on the substrate concentration S0. The investigation was 
carried out at the following values of Vmax: 0.01, 0.1, 1, 10 and 100 µM/s to get results for a wide range 
of values of the maximal enzymatic rate. The size of microreactors (b = c = 0.1 mm, θ = 0.5) was 
chosen using the results presented in Fig. 3 so that the biosensor current is about to be the highest. 
Results of calculations are depicted in Figs. 5 and 6.  As it is possible to notice in Fig. 5, the steady-
state biosensor current iR is a monotonous increasing function of S0 at all values of Vmax. The shape of 
all curves is very similar to that observed in the case of membrane biosensors [2,3,26]. 

The Michaelis constant KM is known to be the substrate concentration at which the reaction rate is 
half its maximal value. Fig. 5 shows the effect of halving for two values of Vmax: 0.01 and 0.1 µM/s at 
which enzyme kinetics controls the biosensor response. The relative difference between half of the 
maximum of the steady-state current and another one at KM does not exceed 2% for both values of Vmax. 
Consequently, the effect of halving is valid for biosensors based on an array of microreactors, like for 
membrane biosensors. 
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Figure 4. The normalised steady-state current iN versus the degree θ of electrode coverage at three 
values of the external diffusion coefficient Db: De (1, 4), 2De (2, 5) and 4De (3, 6) two maximal 
enzymatic rates Vmax: 10 (4-6) and 1000 (1-3) µM/s in the cases of cylinders (a) and strips (b), b = c = 
0.1 mm, d = c + 0.02 mm, S0 = 20 µM. 
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Figure 5. The steady-state current iR versus the substrate concentration S0 at different values of the 
maximal enzymatic rates Vmax (M/s) in the cases of cylinders (a) and strips (b), b = 0.1 mm, θ = 0.5; 
other parameters are the same as in Fig. 2. 

Fig. 6 shows the effect of substrate concentration S0 on the half time t0.5 of the steady state biosensor 
current. As it is possible to notice in Fig. 6, t0.5 represents a monotonous decreasing function of S0 at 
Vmax > 0.1 mM/s. At S0 being between 0.1 and 10 mM (between KM and 100 KM), a shoulder on the 
curve appears for Vmax = 0.1 mM/s. It seems possible that the shoulder on the curve arises because of 
very high Vmax. At substrate concentration S >> KM the reaction kinetics for S is a zero order 
throughout the microreactor, whereas for S << KM the kinetics is a first order throughout. At 
intermediate values of S the kinetics changes from zero order to first order across the membrane. 
Similar effect was noticed during the oxidation of β-nicotinamide adenine dinucleotide (NADH) at 
poly(aniline)-coated electrodes [30]. Figs. 5 and 6 show that at high substrate concentration S0 > 10 
mM (S0 > 100 KM), the catalytic reaction makes no notable effect on the behaviour of biosensors based 
on an array of microreactors. 
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Figure 6. The half time t0.5 of the steady-state biosensor response versus the substrate concentration S0 
at different values of the maximal enzymatic rates Vmax (M/s) in the cases of cylinders (a) and strips (b); 
values of other parameters are the same as in Fig. 5. 
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Conclusions 

The mathematical model (3)-(8) can be successfully used to investigate regularities of the response 
of biosensors based on an array of enzyme microreactors immobilised on a single electrode. 

In the cases when the biosensor operates in bulk solution having the diffusion coefficient greater 
than another one in the enzyme, and the biosensor response is significantly under diffusion control, the 
steady-state current is a non-monotonous function of the degree θ of electrode coverage by the enzyme. 
Otherwise, the steady-state current is a monotonous increasing function of θ  (Figs. 3, 4). 

In the cases when the steady-state current is the non-monotonous function of the degree θ of 
electrode coverage, a biosensor based on an array of microreactors is able to generate a greater steady-
state current than a corresponding membrane biosensor of the enzyme layer thickness being the same 
as the height of the microreactors (Figs. 3, 4). The denser microreactors are distributed on the electrode 
surface the higher the steady state current is generated. This feature of array biosensors can be applied 
in design of novel highly sensitive biosensors when the minimisation of the enzyme volume is of 
crucial importance. Selecting the geometry of microreactors allows minimising the volume of enzyme 
without loosing the sensitivity.  

Work is now in progress to compare the simulations obtained for various microreactor geometries 
with similar experimental studies.  
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