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Abstract: With the ever increasing complex sensing and actuating tasks in manufacturing
plants, intelligent sensors cluster in hybrid networks becomes a rapidly expanding area.
They play a dominant role in many fields from macro and micro scale. Global object control
and the ability to self organize into fault-tolerant and scalable systems are expected for high
level applications. In this paper, new structural concepts of intelligent sensors and networks
with new intelligent agents are presented. Embedding new functionalities to dynamically
manage cooperative agents for autonomous machines are interesting key enabling
technologies most required in manufacturing for zero defects production.
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1. Introduction

Intelligent or smart sensors have been known for more than two decades. These sensors are more
sophisticated than traditional sensors as they gather, analyse and transmit data. A state-of-the-art of
intelligent sensors covering the last two decades are found in [1,2]. According to IEEE 1451.2
specifications, a smart sensor is a version of smart transducer that provides functions beyond those
necessary for generating a correct representation of a sensed or controlled quantity. This functionality
typically simplifies the integration of the transducer into applications in a networked environment.

The basic principle of an intelligent (i.e. smart) sensor is that its complexities must be concealed
internally and must be transparent to the host system. Smart sensors are designed to present a simple
face to the host structure via a digital interface, such that the complexity is borne by the sensor and not
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by the central signal processing system [3]. So far, an exact definition is still indefinite. However,
generic concept of an intelligent sensor can be described according to Schodel [4]: ‘It is common to
call a sensor intelligent, if just a microprocessor device is assembled at the location of the sensor
transducer, to implement filtering and other simple pre-processing tasks at the location of the sensor’.
In addition to the previous concept, Brignell [5] describes intelligent sensor that ‘modifies its internal
behaviour to optimise its ability to collect data from the physical world and communicate them in a
responsive manner to a host system’. This concept is similar to the concept given by Chita [6]. The
ultimate intention of developing intelligent sensors is to imitate human abilities such as multiple
functions for sensing objects simultaneously, learning with adapting capabilities and decision making
[7]. The development of intelligent sensors rests on advances in hardware (i.e. measurement
technology) and advances in software (i.e. processing technology). Advancing in microelectronic,
microcomputer and manufacturing technologies enables an integration of sensing elements and signal
processing elements embedded into a single chip found for example in Micro-Electro-Mechanical
System (MEMS). For multiple measurements, Nagel [8] introduced the concept of ‘cluster’; the
integral of several different sensing elements uses common computing and communicating capabilities
and shares a power supply to imitate the human abilities. Continuous improvement in MEMS
technology can ease this implementation.  The use of such sensors is very promising in manufacturing
as there is a clear trend towards modularity of future holistic intelligent Computer Numerically
Controlled Machines (CNC), PLCs and Robots based on distributed control design which allows
flexible control configuration and adaptation of systems. Such systems are governed by intelligent
control systems consisting of a hierarchical structure of production control, machine control and drive
control layers that have to implement open interfaces, learning capabilities, self-tuning mechanisms
and sophisticated model-based prediction instruments in order to allow automated error-free
machining for example. The future multi process autonomous machine is expected to be equipped with
new concepts of multi agent sensors cluster to enable a full control of diverse variables such as cutting
parameters, in-process dimensional measurement, geometric and form defects (Figure 1). After a
static, dynamic and thermal analysis, a sensor mapping strategy on the machine is of paramount
importance to ensure continuous and accurate feedback.  As an example, various wireless sensors are
placed at high amplitudes locations of major modes of vibrations, while thermal sensors are located in
critical locations subject to larger expansions. With such a sensor mapping, it is planned to implement
compensation of errors and forces while machining to secure zero defect workpiece in the autonomous
mode.

Step-NC

Manufacture Process

Prod. Manag. Sched.

In-process inspection

Quality check

Communication

Super controller

Drives

Paramet. Monitoring

Thermal Expansion

Dynamic Errors

Machining Paramet.

Second order effects

Fault Monitoring

Predic. Maintenance

Figure 1. Error mapping in machine tools.
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The use of reconfigurable sensors for maintenance requires data to participate in feature recognition
in order to help in the identification of possible failures types and immediately decide on the actions to
be taken (self diagnostic and self service strategy, self healing requiring autonomous supervision).

In large complex plants such as chemical applications requiring safety and reliability, the processes
are based on highly automated control systems involving a large number of sensors. These should be
reconfigurable and capable of performing data interpretation and fusion from multiple sensors with the
validation of local and remotely collected data. This will help in the reduction of false alarms and
downtime as well as avoid jeopardizing personnel and environmental safety. Moreover, the data
generated by manufacturing plants requires suitable techniques to improve their accuracy and to
extract useful information about the operational status of the process.

To enable such remarkable features in sensors technology, a number of core characteristics are
presented and discussed next.

2- Structure and functions of an intelligent sensor

2.1 Intelligent sensor architecture

As illustrated in Fig. 2, intelligent sensor architecture comprises the following;
(a) A sensing element that links the external world to a sensor system by generating electrical signal

(e.g. voltage, current) with response to physical properties of the environment such as temperature,
pressure, light intensity, sound, vibration, etc.

(b) An interface element for signal conditioning and data conversion. The signal obtained from the
sensing element is modified, enhanced and converted to a discrete time digital data stream before
passing through a processing element.

(c) A processing element that includes a microcontroller with an associated memory and software;
this is the main component of the architecture where the incoming signal is processed.

(d) A communication element, which provides a two-way communication between the processing
element and users. The communication are wireless, optical fibres, serial buses, and interfacing to
successful communication with the outside world.

(e) A power source.

The sensing part within an intelligent sensor may differ from conventional transducer material. As
hysteretic and nonlinear behaviour materials were previously discarded because of non-reliability or
instability in sensing applications, they could be used in a sensor that contains its own dedicated
microprocessor; the need to burden a central processor with a complex model or filtering algorithm is
thereby avoided. Applications can be envisioned exploiting the inherent memory or hysteresis of
nonlinear materials to reduce the signal processing workload for example, "record" peak temperature
[3]. The signal processing concept present in a smart sensor will relieve the constraint of the paradigm
that sensor elements must be linear and noise-free; however, the cost of the added electronics must be
considered in the sensor system design analysis. Two architectures are shown in Fig. 2 (a) and (b). The
former integrates all elements into a single structure whereas the latter separates sensing and interface
elements from processing and communication parts.
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Figure 2. Intelligent sensor architecture;
(a) Integrated intelligent sensor, (b) Semi-integrated intelligent sensor.

The semi-integrated intelligent sensor architecture has been proposed according to existing sensors
claiming intelligence. The development of an intelligent sensor system is limited by the components
limitation such as battery lifetime for wireless sensors and the limited memory with low processor
speed that have an effect on the processing unit performance. Extensive research has been carried out
to develop fully integrated smart sensors with smaller size sensing element and to improve precision
and accuracy of measurements. Improving power consumption requirement and the design of self-
powered sensors which energy is converted from mechanical vibration [9, 10, 11, 12] or from light
source [13] are also of interest. Moreover, the development in software programs to include more
expert systems is vital to the improvement of intelligent sensors. To extend the use of those sensors in
complex systems with difficult data transmission, wireless communication [14] was introduced with
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the support of bluetooth, WIFI, optical fibre technologies and fieldbus [15]. Potential advantages of the
intelligent sensor concept include:

 Reduced down time.
 Fault tolerant systems.
 Adaptability for self-calibration and compensation.
 Higher reliability.
 Master/Slave sensors mapping capability.
 Lower weight.
 Lower cost.
 Lower maintenance.

2.2 Intelligent sensor functionalities

An intelligent sensor is expected to demonstrate multi-channel sensing, store sensing signals to be
of later use, be able to make decision according to stored information and adapt itself to changing
conditions. Various functionalities have been suggested for intelligent sensors. Robert [16] proposed
that the intelligent sensors should encompass configuration, communication, measurement, computing
and validation functionalities. Similarly, Meijer [17] includes three functionalities; compensation,
computing and communication. While Tian [18] suggested that what is called an intelligent sensor
should have the functions of compensation, validation, data-fusion and communication. Despite the
difference in categorisation, these functionalities are overlapped and complimentary to each other.
New functions such as self-calibration could be also addressed. Therefore, the generic functionalities
of intelligent sensors are summed up as follows:

2.2.1 Compensation functionality

The compensation is a method to improve measurements for better accuracy by considering the
errors in the system. The task is easier if systematic errors are known. The compensation could be
divided into three categories:

(a) Non-linear compensation that linearises the relationship between input and output.
(b) Cross-sensitivity compensation such as temperature control compensation.
(c) Time based or long term drift compensation due to degradation of the sensor elements [18].

Compensation functionality confirms the sensor performance and ensures that sensors are working
correctly.  Self-diagnostic, self calibration [19-23] and adaptation are applied into intelligent sensors to
detect and eliminate the influence of systematic errors and to check the sensor performance. The
numerical methods applied are sometimes onerous.

2.2.2 Processing functionality

Processing is the ability to provide the most relevant information in an efficient representation to
the communication interface. This processing task involves signal conditioning, signal conversion,
logic functions, data reduction that is used to enhance the received signal, and, decision making in
conjunction with other signals types from other sensors (i.e. single sensor or sensors cluster). The
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measured quantity is determined despite the effects of manufacturing variance, environmental
parameters and ageing processes. Development in software technology enhances the computing
capability with the use of artificial neural network, neuro-fuzzy or neuro-genetic to try imitating the
ability of human brain.

2.2.3 Communication functionality

The purpose of the communication functionality is to exchange information between the sensor and
the user and to allow users to reprogram for other sets of measurement. In this case, a two-way
communication is needed. The communication can pass through either wires, optical fibres, wireless or
fieldbus options. These developing communication technologies make communication systems less
complex with better flexibility at low cost. An example of communication functionality is described in
[16]. Further details are given in §2.3.

2.2.4 Validation functionality

Data validation increases the overall reliability of sensors system. Faulty data can cause unexpected
behaviour or system failure; therefore, an intelligent sensor must be able to evaluate the validity of the
collected data to avoid any disastrous effects of the propagation of erroneous data and to warn users
about it. The impact of such errors may be reduced with a dense sensors network, or, with a knowledge
based system where the smart sensor incorporates expert systems for example. Self-validation
becomes more important when various data from multi-sensors or multi-measurements are sent to the
system [18, 24]. The objectives of this validation are to enhance safety, to provide better product
quality, to reduce unscheduled shutdowns and to improve plant efficiency and availability.

2.2.5 Integration functionality

This concerns the integration of the sensing element with data processing and communication on a
single ship to eliminate wires connection between components, to reduce the overall size of the
sensors, to optimally use the power energy and to reduce costs. Therefore, the downscale of such
sensors will ease their use in clusters and hence increases the overall efficiency and reliability of
measurements. MEMS is an enabling technology that allows the development of smart products. It
augments the computational ability of microelectronics with the perception and control capabilities of
micro-sensors and micro-actuators and expands the space of possible designs and applications. More
implementations are expected with nanotechnology and biotechnology.

2.2.6 Data fusion functionality

The function of data fusion is to ensure that only the most relevant information is transmitted
between sensors. Information from multiple sensors or multi-measurements can be combined,
associated and correlated using data fusion techniques. The latter can be categorised into three
architectures; centralised fusion, decentralised fusion and hybrid fusion. The centralized fusion
architecture combines multi-sensor data while it is still in its raw form. Unlike the centralized fusion
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architecture, the decentralized fusion architecture allows each sensor to perform feature extraction
before the fusion process. The combination of the centralised and decentralised approaches provides a
hybrid architecture that fuses raw data, feature data and decision data [25].

2.3- Interface with the outside world

Interfacing is one of the most important issues found in industry related to intelligent process
instrumentation e.g. sensors and actuators. Hence not only field-bus based smart sensors design and
application are rapidly becoming the preferred choice for building the next generation of distributed
measurement and control systems, but also Internet technologies such as TCP/IP with Ethernet,
Bluetooth and WIFI. The framework which can support the current trend comes from IEEE 1451
standards specifying smart transducer interface architecture that enables to unify not only
interconnecting smart sensors with various field-buses but also direct coupling to the Ethernet-based
Intranet. IEEE 1451 consists of the family of standards for a networked smart transducer interface that
include namely a smart transducer information model; 1451.1, targeting software-based, network
independent, transducer application environments and a standard digital interface and communication
protocol. 1451.2 [26] is used for accessing the transducer via the microprocessor modelled by the
1451.1. The next two standards, 1451.3 and 1451.4 extend the possible single-attached configurations
to the embedded distributed multi-drop systems and to mixed-mode communication protocols for
analogue transducers.

An important phenomenon in the implementation of such interface standards is the enormous
growth of complexity of control and data acquisition systems. IEEE-1451.2 was the first standard to be
finalized [27]. Its mission was to separate the network issues from the transducer issues. This was
accomplished with four concepts: the Smart Transducer Interface Module (STIM), the Network
Capable Applications Processor (NCAP), the Transducer Independent Interface (TII) and the most
important element of this strategy the Transducer Electronic Data Sheet (TEDS). The STIM handled
the sensor and actuator low-level interface information and formatted data communication messages
between the NCAP and STIM in a standardized digital manner. The NCAP handled the network
interface and also managed the TII dedicated interface port to the STIM. It can be argued that the
TEDS was the crown jewel of this strategy in that it provided for self- identification of the connected
sensor or actuator in a very general manner. Depending on how many of the TEDS fields are
implemented, TEDS information can provide great details about how to read data from the transducer
and help identify which transducer is being viewed [28].

3. Systems characteristics and related agents

3-1 Systems characteristics

Systems have different characteristics and requirements such as those within autonomous machines.
The most suitable categories as defined in cognitive systems [29, 30] are defined hereafter:

a) Ill-structured: usually designed systems do not have all the necessary structural information, they
are ill-structured. Agents have a distinct notion about themselves and know that their environment can
change, hence suitability for a dynamic environment.
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b) Modular: an agent applies very well to modular systems as it has dedicated tasks.
c) Decentralised: an agent can easily be applied in decentralised system to ease self-decision

making without interference with other processes.
d) Changeable: an agent is very good for changeable systems. Change could be handled by both

modular and decentralised systems. Decentralisation minimises the impact one module has on another
when it changes.

e) Complex: with the increased complexity of systems, the agent is very well suited to handle such
difficult task to model the behaviour of one or several components within its responsibility.

f) Real-Time:  real time control is required in various applications today where an agent is very
suitable to achieve it.

To identify the emerging intelligence between agents, Nwana [31] has emphasised autonomy,
learning, and co-operation as characteristics that are very important in an intelligent agent but he did
not mention the word ‘intelligence’ itself. Figure 3 shows the emerged agents from the interaction
between the characteristics as defined by Nwana.

Figure 3.  An agent topology according to Nwana.

3.2 Key agents

A sensor agent is able to control and optimise the use of a sensor within the cluster or the distributed
sensors system. Among the tasks, it could decide which sensor has the task to start measuring
according to its location and appropriate time. It could be replaced in case of failure and the task
immediately transferred to another equivalent sensor. The designed agent should have the ability to
learn rapidly from the existing situation to decide which sensor should go for the current query. The
agent could identify and memorise the more reliable sensors from low reliable ones and could learn as
it progresses. With its local control, this agent can determine the efficiency of the overall
measurement, learn, cooperate and communicate with other agents.
An object agent is the other new concept to be dedicated to the object being monitored. It conserves all
the information about it. The user could request at any time the current object information. If an object
is moving in a fluid, a series of sensors could track it as it passes in their respective action area and the
information is compiled by the sensor agent for the abject agent. Laser trackers for moving objects are
very good examples.
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3.3 Intelligent agents

The capabilities of the sensors are relatively limited by the degree of intelligence provided by the
associated agents. Hence, it is important to identify the required agents as well as their structure to suit
the above requirements.  But according to [32] the definition of such agents is still not clear among the
interested community. “Some have tried to offer the general definition of agents as someone or
something that acts on one’s behalf, but that seems to cover all of computers and software. Other than
such generalities, there has been no consensus on the essential nature of agents.” [33]. A large list of
definitions has already been proposed in the literature to include the following without privileging any
of the definitions:

a) The Brustoloni Agent [34, 35], "Autonomous agents are systems capable of autonomous,
purposeful action in the real world."

b) The SodaBot Agent [36], "Software agents are programs that engage in dialogs [and] negotiate
and coordinate transfer of information."

c) The Maes Agent [37], "Autonomous agents are computational systems that inhabit some complex
dynamic environment, sense and act autonomously in this environment, and by doing so realize a set
of goals or tasks for which they are designed." Maes also mentions other agent characteristic such as
fast, reactive, adaptive, robust, autonomous and "lifelike".

d) The Nwana agent [38], to identify the emerging intelligence between agents, Nwana has
emphasised autonomy, learning, and co-operation as characteristics that are very important in an
intelligent agent but he did not mention the word ‘intelligence’ itself. In figure 3 shows the emerged
agents from the interaction between the characteristics as defined by Nwana.

e) The Foner agent [39], according to Foner an agent must have certain characteristics that must be
fulfilled in some way or another for an agent to be called an intelligent agent. The characteristics
mentioned are autonomy, personalization, risk and trust, domain, graceful degradation, co-operation,
anthropomorphism and expectations.

f) The Petrie agent [33], a general description of an agent as someone or something that acts on
ones behalf, is according to Petrie not a sufficient definition, since this description can be applied to all
computers and software.

g) The Jennings and Wooldridge agent [30], according to Jennings and Wooldridge an agent must
be autonomous, an agent is autonomous if it is capable of acting without any direct guidelines from
either humans or other agents. This means that the agent itself has control over its own actions and
behaviour, i.e. the agent encapsulates its behaviour and internal state. If an agent is compared to an
ordinary object that also has an internal state we can see an important difference; that there is at least
one method in an object that can be invoked by another component. This implicates that an object is
not autonomous.

h) The Hayes-Roth agent [40], finally the following definition of an intelligent agent is presented by
Hayes-Roth: “Intelligent agents continuously perform three functions: perception of dynamic
conditions in the environment; action to affect conditions in the environment; and reasoning to
interpret perceptions, solve problems, draw inferences, and determine actions.”
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3.4 Single-agent and Multi or hybrid agent systems

In the application cited earlier where different types of measurements are required for different
purposes, it is clear that agents have to either work alone or cooperate to achieve a task. The question
could be whether a single agent could perform all the tasks or a concept of multi-agent has to be
introduced. Communication between agents is important to transfer information with a capability of
prioritization.  With multi-agent systems, parallel computation could be used to ease the programming
and to speed up the system robustness and scalability [41].

Multi agent systems would not probably be of systematic use if the system is not suitable. In some
cases, it may introduce delays or will be an expensive solution. Further multi-agents are not suitable
when used only to decentralise a system normally modelled as a centralised one. It is not advised to
provide multi-agent solutions to non-suitable problems, it is foremost important to focus on the
problems the multi-agents are meant to solve and not on the possible benefits [42].

Today the focus of agent research is more on multi-agent systems than on single agent systems,
since agents that co-operate and/or communicate can solve much more complex tasks than just what
one single agent is capable of [43]. Verification and validation of multi agents has already been
addressed in [44]. Learning and autonomous capabilities should be part of the multi-agents strategy.
Nahm and Ishikawa [45] have proposed a hybrid network of agents as shown in Fig.4, they employ a
lightweight middle agent, called ‘‘interface agent’’ for continuous or discrete interactions between
local agents (type 1), between a collection of local agents and a collection of remote agents (type 2),
and between a local agent and a remote agent (type 3). Therefore, agent interactions are made only via
the interface agent.

Figure 4.  Hybrid network application.

In large sensors cluster with sub-system, this could be extended as we propose in figure 5 where
(type 2’) could be cooperative or central interaction that may be linked to another sub agents group
with (type 4) between local agents of sub-groups and (type 5) between local agent and remote agent
from other sub-groups.
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Figure 5: Proposed network application.

Passive sensors, as defined to simply measure and report on detected signals in their local
environment, could also be used in conjunction with an intelligent cluster. These sensors are
considered as slave sensors and their location in a system is very critical as the measurand has to be
well defined and located. Layered hierarchical network structure could be a reasonable solution. Closer
sensors will form a cluster that may report to a cluster master. This will also solve the scalability if the
sensor network becomes very large.

4. Applications of intelligent sensor and agents in manufacturing

Application of intelligent sensors in manufacturing has been expanding over the past decade. A
limited number of relevant applications of intelligent sensors in different manufacturing aspects are
discussed.  Tian [18] presented a fieldbus-based intelligent displacement frequency output sensor.  It
consists of a displacement frequency output sensor, a local operating network node and neural
networks embedded in the neuron chip. The configuration diagram is shown in Fig. 6.  The fieldbus-
based intelligent sensor has functionalities of self-calibration, self-validation, self-compensation,
computing and communication. Self-calibration and self-compensation are used to detect and eliminate
the influence of system errors and to check the sensor performance. Self-validation is applied to
increase the reliability of the sensor. Therefore, this intelligent sensor is much more flexible and
accurate than a traditional sensor.

Capacitive pressure sensors (CPS) have been widely used in engineering, industrial, scientific and
medical applications because of their sensitivity and power dissipation. The changes in capacitance
occur due to the deformation of the structure. The magnitude of the deformation is proportional to the
ambient pressure, but it also depends on the ambient temperature and any initial stresses produced
during manufacturing process, which make CPS non-linear and temperature dependent. To correct its
non-linear characteristics and compensate temperature in a dynamic environment, the intelligent CPS
based on functional link artificial neural networks (FLANN) was developed. The FLANN contains
advanced signal processing technique and learning algorithm [46].
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Colour sensors have found their applications in many fields such as the electricity industry for
recognition and assignment of coloured cords and the automatic test of mounted LED arrays or
matrices. In the textile industry, they are used to check colouring processes, while in building materials
industry, they are suitable to control compounding processes. Colours have an influence on the process
control or quality protection as measuring or controlling variables. Conventional colour sensors detect
colour property of objects but decisions or control actions are based on human expertise. Intelligent
colour sensors have been developed to equip the colour sensors with decisions ability. Benoit [43]
proposes an intelligent colour sensor based on fuzzy technique. The definition of functionalities is
coded in a special language called Prototype of Language for linguistic Actuators and Sensors
(PLICAS).  The functionalities coded in PLICAS are sent over a network to be executed by another
computing system. This approach allows adding complex functionalities to usual intelligent
instruments. For example, it can be useful to implement diagnosis functions into an intelligent sensor.

Fuzzy processing is programmed by PLICAS. Fig.7 illustrates the distribution of intelligence over a
network; the intelligent sensor part contains the LAB calculus and the other measurement services and
the PLICAS source code of the fuzzy description and fuzzy aggregation. The colour calibration has not
been discussed in this paper although it constitutes a critical issue. On the other side, if large number
of colours is used, a dynamic auto-calibration should be implemented, otherwise, it will be a very time
consuming and laborious operation. Therefore faster approaches have to be developed.
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Temperature

Displacement

Microprocessor 3

Microprocessor 1

Microprocessor 2

GatewayPC
RS232

Lontalk
Fieldbus

Figure 6.  A fieldbus-based intelligent frequency output sensor [18].

Lammerink [47] presents an intelligent gas-mixture flow sensor that can detect the mass and the
ratio of two gases in the gas mixture. The sensor mainly comprises different flow sensing elements and
an artificial neural network (ANN), as shown in Fig. 8. The sensing elements (SE) are integrated into a
chip where the ANN is implemented. The outputs from the sensing elements are transmitted to the
ANN to compute the mass and the ratio of two gases in the gas mixture.  The sensor output can be
communicated with the outside world via RS232 interface. Again, the sensor calibration has not been
discussed, although it is an important component.
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The absence of design generalizations and standard interfaces in artificial chemical sensing systems
is a well-known problem usually leading to the re-calibration of the olfactory system whenever a
sensor has to be substituted.

Bigger problems come up when the migration to sensors based on a different principle is required
(e.g. from resistive polymeric sensor to mass-variation quartz crystal microbalance sensor); this
necessity involves the re-design of part or even the whole olfactory system forcing research groups to
great efforts in system design and software programming. A way to standardize such gas sensors and
electronic olfactory systems is presented in [55]. In particular the calibration was proposed to be
standardized in IEEE 1451.4. A procedure for dynamic calibration of a sensor gas, for example, was
suggested with a calibration transfer function instead of a calibration line [57]. The calibration transfer
function enables measurement of the heat generation rates during adsorption, necessary for obtaining a
complete picture about adsorption kinetics.
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Figure 7. Concept of intelligent fuzzy sensor with small processor [27].

According to the application reviewed above, the development of intelligent sensors has been
progressing through improvement of the processing element. Using fuzzy or neural networks promotes
sensor flexibility, self-compensation, self-validation, self organization functionalities [42]. Also,
integrating all elements into one single chip has contributed to the miniaturization of the sensors.
Besides size-reduction and improving processing performance, other elements in the intelligent
sensors have also been developed. For example, measurement with in-situ data processing increases
accuracy, stability and reliability of the sensing elements. Self-powered technology can enhance power
consumption property. Communication technology such as wireless, Bluetooth and infrared (IR)
extends communication range.

Uncertainty may be questioned when using fuzzy logic in those smart sensors. The Hybrid Fuzzy
Classifier System (HFCS) [56] aims to combine information from multiple domains in order to detect,
isolate, identify, and mitigate threats to power networks.  The HFCS includes a component that
observes the system to learn its normal operating states.  Another part of the HFCS contains a database
of information including component reliability, sensor accuracy and maintenance records (Fig. 9).
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Figure 9.  Hybrid Fuzzy Classifier System (HFCS).

For the sensor measurements, four fuzzy inputs (variables) were created: Sensor Reliability,
Standard Error, Load Difference and Relative Age.  Because the sensor accuracy is explicitly included
in the state estimator, it is not included as a fuzzy variable. The hybrid fuzzy classifier system (HFCS)
has the potential to increase the robustness of detecting, identifying and characterizing inconsistencies
in sensory data from the power system. Some tests have shown very good accuracy in measurements,
however, limitations for higher accuracies should be investigated.

In-process measurement sensors [48] have introduced a new aspect of measurement in CNC
machines, i.e. ‘measuring geometric forms of a workpiece while it is being machined’. This improves
on-line error compensation by adjusting machining parameters. A cylindrical capacitance-type spindle
displacement sensor was developed [49].  The results from the research showed that the developed
sensor could be utilized as an effective and cheap on-line sensing device to monitor cutting conditions
and tool performance in the unmanned centre. Novel fractal estimation methodology for online
estimation of cutting tool flank wear is presented. The fractal dimensions of the attractor of machining
dynamics are extracted from a collection of sensor signals using a suite of signal processing methods
comprising wavelet representation and signal separation, and, are related to the instantaneous flank
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wear using a recurrent neural network [50, 51].  Current in-process sensors are based on
interferometric and moiré techniques. Vision systems can be integrated with other coordinate
digitizing sensors, such as touch probe sensors to acquire at high speed high precision coordinates
acquisition of complex features in mechanical components [52, 53].

The MEMS sensors and actuators are widely used in various difficult applications due to their
advantages in miniaturisation, low power consumption, ease of measurement and telemetry. Nagel [8]
has reviewed sensors made with MEMS. Few examples are cited such as: a smart pen contains three
accelerometers, three force sensors and two tilt sensors for signature verification. A smart wristwatch
with temperature, pressure, humidity and acceleration sensors is used to monitor an environment. Most
of the predictions expected in the last decade have already been implemented (e.g. self calibration,
wireless communication) but still time consuming tasks.

The realization of future complete intelligent sensors depends on the development of both hardware
and software including electronics and sensing element. Intelligent sensors and actuators will form a
network that is able to sense, process, communicate the information, act, and eventually modify system
conditions based on this information. The intelligent network will mainly comprise intelligent sensors
and actuators, communication channels and an advanced centralized processor. When the intelligent
sensor network is becoming available, the ultimate goal to imitate human abilities may become a
reality. Figure 12 shows the overall future trend of the use of intelligent sensors architecture in a
manufacturing system using sensors clusters deployed in sensitive locations such as hazard warning
applications with sensor agent as well as an object agent in closed loop structure.

Figure 10. Multi sensor performance assessment.

A particular example of intelligent agent in self maintenance that could be applied to machine tool
centres was proposed by Lee [54] and is shown in figure 10. An aspect of the machine performance is
assessed by Multi-sensors acquiring signals and failures are predicted after feature recognition is
established. It is expected to include such an agent in the next generation of CNC machine-tool centres
to adopt the following architecture proposed in figure 11.
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5 - Future requirements for a full process control

5.1 Sensor Master/clusters set-up for single/hybrid processes

For simple and reconfigurable systems, 3D measurements will be possible to govern existing
complex phenomena including those parameters probably not required in the equation (fig.12). Self-
calibration will be easier because of the multiplicity of the sensors tracking the same parameter.

Figure 12. Intelligent sensor cluster activity.

5.2 In process Parameter evaluation

In autonomous process systems, the sensing system should be able to track the failing process
parameters in real time and apply self adjustment according to requirements.  In more optimistic
situations, the cluster could capture high order effects that may degrade the performance of the current
process.
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5.3 Extreme environment sensors for manufacturing processes and cutting interfaces

This is an extremely important issue required in manufacturing at standard level to monitor the
cutting interfaces; e.g. laser processing, high speed machining. It becomes extremely important and
challenging at nanoscale machining.

5.4 Plug and Play sensors with standardization of interfaces

International standardisation of interfaces is very welcomed in industry; this will ease the
implementation of plug and play characteristic through expert systems to identify the opposite
interface.

5.5 Scalability and implementation in micro-systems

Intelligent sensors are not restricted to macro scale applications but extended to micro systems too.
The concepts discussed earlier could be downscaled and used in various areas such as biological
sensor in micro-fluidics systems and tactile sensors to simulate human fingertip [58].

6. Conclusion

An intelligent sensor network is an array of diverse types of sensors in a network tracking a number
of variables. With the complexity trend in the new advanced intelligent machines, many characteristics
are required beyond the current capabilities of smart sensors.

Fuzzy or neural networks are implemented to ease complex intelligent functionalities, such as self-
compensation, self-validation and computing functionality. With appropriate decision algorithms, the
intelligent sensor network should be able to act independently according to information received or
adjust itself to the changing working conditions. This will achieve a high reliability closed loop design
process. Scalable systems are required to respond urgently to needs with the ever increasing
complexity and to survive if part of the network becomes non-reliable or destroyed.

In ultra high precision measurements with very tight accuracies, calibration may constitute a real
challenge especially with sensors cluster having large number of measurands to be calibrated, but on
the other side, large variety of sensors nodes could be a potential for greater accuracy of information.
The reliability could be increased if the resolution is improved without necessarily increase the
network traffic.

With such a development of sensor clusters, this will constitute a new key enabling technology for
autonomous machines and ability to achieve “just in time” actions required in various manufacturing
applications such as zero-defects production and zero downtime. For improved capabilities, the theory
of error propagation including higher order uncertainties is expected to be used to track down non-
linearities and sources of errors present in any systems. This method will be enabled with intelligent
cluster sensors. Robustness and high accuracy of information are of paramount importance in such
systems. Needless to mention that sensor location although out of the scope within this paper, is
extremely important.
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