Table 1. Characteristics of flow-based biosensing systems for the determination of pesticides. | Enzyme | Immobilisation
method, support
and electrode | Measurement | Pesticides | Analysis time | Working
range | LOD | Inhibition
time | Enzyme reactivation | RSD | Stability | Real samples | Ref. | |---|--|---|---|--|------------------------------|-----------------------------|--------------------|---|---|--|---|----------| | AChE V-type
from Electric
Eel | Covalent binding on
activated CPG beads
(reactor), tubular H ⁺ -
selective membrane
electrode | Potentiometry | Diazinon Parathion-ethyl (previously oxidized with bromine) | | 10 ⁻⁵ - 100 μM | 0.2 nM
1 nM | 30 min | 20 µM 2-PAM
(20 min) and
working buffer
(20 min) | | | | 36 | | AChE VI-S-
type from
Electric Eel | Incorporation in air
stable lipid films
supported on a
methylacrylate
polymer, glass
electrode | Ion current
transients | Carbofuran | | 1 - 100 nM | 1 nM | 6 min | Substrate
injections | | 90% activity
after 30 days | Fruits, vegetables
and dairy
products | 58 | | OPH from recombinant <i>E. coli</i> | Cryoimmobilisation
by PVA entrapment
in a mini-reactor,
glass pH micro-
electrode | Potentiometry | Paraoxon | 20 min | 0.001 - 1 mM | | Not needed | Not needed | 3.5%
(n=10, 1 mM) | 90% activity
after 60 days | | 45 | | OPH from recombinant <i>E. coli</i> | Cystamine-
glutaraldehyde
coupling on a thin-
film gold electrode /
Glutaraldehyde cross-
linking on a pH-
sensitive Ta ₂ O ₅ /
silane-modified EIS | Amperometry
(+0.75 V vs.
Ag/AgCl) /
Potentiometry
(constant-
capacitance
mode, 22 nF) | Paraoxon
(amp./pot.)
Parathion
(amp./pot.)
Dichlorvos (pot.)
Diazinon (pot.) | < 1 min | 1 - 100 μM

2 - 100 μM | 70 nM / 2 μM 6 μM (s/n = 3) | Not needed | Not needed | 1.6% / 3.8%
(n= 15,
100 µM
paraoxon)
8% (n=15,
100 µM
dichlorvos) | activity after
30 days (1 or
2 cycles/day) | | 48
49 | | AChE VI-S-
type from
Electric Eel | Covalent binding on
silica gel,
conductivity or pH
electrode | Conductimetry /
Potentiometry | Carbofuran
Carbaryl | 37 and 31 min
(1 st and 2 nd
meas.) /
45 and 35 min
(1 st and 2 nd
meas.) | 0.09 - 36 μM
1.5 - 50 μM | 0.09 μM
1.5 μM | 5 min /
10 min | | 2.4% /
4.0% | | Water | 59 | | Biosensor systems based on amperometric detection | | | | | | | | | | | | |---|--|---|------------------------|--|--|-----------------------|--|---|---|--------------------------------|------| | Enzyme | Immobilisation method, support and electrode | Pesticides | Working potential | Working range
(WR) | LOD | Inhibition time | Enzyme reactivation | RSD | Stability | Real samples | Ref. | | AChE III-type
from Electric Eel | Glutaraldehyde/BSA
crosslinking onto nylon grids
on a GC electrode | Paraoxon
Carbaryl | +0.25 V vs.
Ag/AgCl | 0.5 - 10 μM
0.5 - 50 μM | 0.1 μM
0.1 μM
(IC ₅) | | 1.4 mM 2-PAM
(4 h) and
working buffer
(2 h) | 3.7% (n= 5, 40 µM)
4% (n= 5, 8 µM) | 90% activity
after 30 days | Lagoon
water and
kiwis | 42 | | AChE III-type
from Electric Eel | Coupling through a cystamine
SAM onto a gold-coated nylon
mesh attached to a GC
electrode | Carbaryl
Paraoxon | +0.25 V vs.
Ag/AgCl | 0.01 - 10 μM
0.01 - 10 μM | 0.05 μM
0.05 μM
(IC ₅) | | 1.4 mM 2-PAM
(1 h) and
working buffer
(2 h) | <5% (10 μM)
<5% (10 μM) | | | 43 | | BChE from horse serum | Glutaraldehyde crosslinking
on nylon, cellulose nitrate or
white tracing paper
membranes, covering epoxy
carbon-paste electrodes | Diazinon | +0.61 V vs.
Ag/AgCl | | 5 nM (in solution)
4 nM (nylon)
1.5 nM (cellulose) | 10 min | 0.1% TMB-4 (10 min) | | 100% after 10
uses and
subsequent
regeneration | | 38 | | AChE from bovine erythrocytes | Glutaraldehyde crosslinking
on aminated magnetic
particles (magnetic reactor), Pt
thick-film electrode | Carbofuran
Paraoxon-ethyl
Malaoxon
Paraoxon-methyl | +0.6 V vs.
Ag/AgCl | 4.5 - 271 nM
3.8 - 230 nM
3.2 - 191 nM
4.0 - 243 nM | 14 nM
12 nM
22 nM
28 nM | 10 min | Release of the magnetic particles by switching off the electromagnet | | | Drinking
and brook
water | 64 | | AChE V-S-type
from Electric Eel | Immobilisation onto activated nylon membrane covering SP electrodes | Dichlorvos | +0.3 V vs.
Ag/AgCl | 0.9 - 90 μΜ | 0.9 μΜ | 3 min | 10 mM substrate
or
0.1 mM 2-PAM
(3 min) | | | | 40 | | AChE VI-S-type
from Electric Eel | Carbodiimide immobilisation
onto pretreated RVC or
immobilisation by cyanogen
bromide activation onto RVC-
agarose composite | Paraoxon | +0.25 V vs.
Ag/AgCl | 5 - 2000 μΜ | $5 \mu M$ (s/n = 3) | Competitive | | | 60% activity
after 30 days | | 39 | | AChE III- type
from Electric Eel | Carbodiimide immobilisation,
with dextran sulfate and
lactitol as stabilisers, on
CoPC-modified SP electrodes | Dichlorvos
Paraoxon | 0 V vs.
Ag/AgCl | | 6 nM
0.04 nM | 20 min | | 11.0% (n= 5)
6.2% (n= 5) | | River
water | 65 | | Wt AChE /
E69W Dm AChE
mutant | PVA-SbQ entrapment on
CoPC-modified SP electrodes | Omethoate | | 0.1 - 10 μΜ | 2 μM / 0.1 μM
(IC ₁₀) | 15 min | Disposable electrodes | 8% (n= 6, 1 μM with E69W) | | Water | 41 | | B4-21 / B4-27 /
B3 Dm AChE
mutants | Co-entrapment during aniline electropolymerisation on sonicated poly(o-PDA)-coated CoPC-modified SP carbon electrodes | Dichlorvos
Parathion methyl
Azinphos methyl | +0.2 V vs.
Ag/AgCl | 10 ⁻¹⁷ – 10 ⁻⁸ M
10 ⁻¹⁶ – 10 ⁻⁸ M
10 ⁻¹⁶ – 10 ⁻⁸ M | 10 aM
100 aM
100 aM | 20 min | | 14% (n= 3, WR)
19% (n= 3, WR)
8% (n= 3, WR) | 65% activity
after 92 days
with stabilisers | | 66 | | AChE VI-S-type
from Electric Eel / | Glutaraldehyde/BSA
crosslinking on SP Pt | Carbaryl
Heptenophos | +0.35 V vs. pseudoref. | 0.005 - 50 μM
0.004 - 40 μM | 1.0 μM / 0.48 μM
2.5 μM / 0.47 μM | No pre-
incubation | | 4 %
4 % | 60-40% activity after | | 67 | | BChE from horse | electrodes | | Ag | | | | | | 150 meas. | | | |-------------------------------------|---|---|---|--|---|-----------------|---|--------------------------------------|--|--|----| | serum | | D: 11 | 0.4.77 | 10-6 1 35 | (IC ₁₀) | 40 . | D 00 10 15 | | during 5 days | | | | AChE VI-S-type
from Electric Eel | Adsorption into a nanostructured carbon matrix | Dichlorvos | +0.1 V vs.
Ag/AgCl | 10 ⁻⁶ - 1 μM | 1 pM | 10 min | Buffer or 10 mM
choline (30 min – | | 70% activity
after 30 days | | 68 | | AChE | LbL immobilisation on CNT-modified GC electrodes | Paraoxon | +0.15 V vs.
Ag/AgCl | 0.001 - 10 nM | (IC ₂₀)
0.4 pM | 6 min | 3 h)
200 μl of
0.1 mM 2-PAM
and 10 mM | < 5.6% (n= 6, WR) | 85% activity
after 21 days | | 70 | | AChE VI-S-type | Al ₂ O ₃ sol-gel entrapment on
SP electrodes | Dichlorvos | +0.25 V vs.
Ag/AgCl | 0.1 - 80 μΜ | (s/n = 3)
10 nM
(s/n = 3) | 15 min | ATCh ATCh substrate | 2.9% (n= 6, 1 μM) | 93% activity
after 25 meas.,
90% activity
after storage
for 5 months | Seawater
and river
water | 71 | | AChE V-S-type
from Electric Eel | PVA-SbQ entrapment on a Pt electrode | Paraoxon | +0.41 V vs.
SCE | | 1 nM (IC ₁₀) | | 1 mM 2-PAM
(7 min) | | 70% activity after 21 days | | 44 | | AChE | PVA-SbQ entrapment on a Pt electrode | Paraoxon
Carbaryl | +0.41 V vs.
Ag/AgCl | 10 ⁻¹⁰ - 10 ⁻⁵ M
10 ⁻¹⁰ - 10 ⁻⁵ M | nM (IC ₁₀) | | 0.5 mM 2-PAM
(15 min) | | | Water | 72 | | AChE V-S-type
from Electric Eel | PVA-SbQ entrapment on a Pt wire electrode | Chlorpyrifos
Chlorpyrifos-oxon
Methyl-
chlorpyrifos-oxon | +0.41 V vs.
Ag/AgCl | 0.1 - 10 μM
0.1 - 10 μM
0.1 - 10 μM | 3.14 nM
73 nM
0.88 µM | 16 min
8 min | 0.4 mM 2-PAM
(3 min), partial
with buffer when
inhibited with
MeCPO | 6%(n= 3, 1 μM)
40-50% (n= 3, 1μM) | | | 73 | | OPH from recombinant E. coli | Covalent immobilisation on
activated aminopropyl CPG
beads (reactor), carbon paste
electrode | Paraoxon
Methyl parathion | +0.9 V vs.
Ag/AgCl | | $ \begin{array}{c} 20 \text{ nM} \\ 20 \text{ nM} \end{array} $ $ (s/n = 3) $ | Not needed | Not needed | 2% (n= 35, 1 μM) | | Spiked
water and
simulated
well water | 46 | | OPH from recombinant E. coli | Cystamine-glutaraldehyde
coupling on a thin-film gold
electrode | Paraoxon
Methyl parathion | +0.75 V vs.
Ag/AgCl | 1 - 10 μM
1 - 10 μM | $0.1 \mu\text{M}$ $(s/n = 3)$ | Not needed | Not needed | 3.6% (n= 20, 1 µM) | 100% activity
after 4 weeks | | 47 | | PH from
Pseudomonas sp. | Polyethyleneimine-
glutaraldehyde coupling on a
SP carbon electrode | Parathion | +0.7 (2 s)
and +0.85
(1 s) V vs.
Ag/AgCl | 0.03 - 0.3 μΜ | 0.5 nM | Not needed | Not needed | | | Tap water
and spiked
river water | 50 |