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Abstract: A method of wet chemical synthesis suitable for high throughput and 
combinatorial applications has been developed for the synthesis of porous resistive thick-
film gas sensors. This method is based on the robot-controlled application of unstable metal 
oxide suspensions on an array of 64 inter-digital electrodes positioned on an Al2O3 

substrate. SnO2, WO3, ZrO2, TiO2, CeO2, In2O3 and Bi2O3 were chosen as base oxides, and 
were optimised by doping or mixed oxide formation. The parallel synthesis of mixed oxide 
sensors is illustrated by representative examples. The electrical characteristics and the 
sensor performance of the films were measured by high-throughput impedance spectroscopy 
while supplying various test gases (H2, CO, NO, NO2, propene). Data collection, data 
mining techniques applied and the best potential sensor materials discovered are presented. 

Keywords: Combinatorial Chemistry, High Throughput, Thick Film, Sol-Gel, Sensor, 
Materials Science. 

 

1. Introduction 

The industrial and private sectors provide a growing market for new sensor materials due to the 
variety of old and new application areas. However, the quality characteristics of good sensors for the 
gas analysis - above all rapid response behaviour, high selectivity and stability - need development 
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periods that are currently limited by their large demand in time and manpower. This is a direct 
consequence of the methods used in this field, dominated by empirical optimization of known sensor 
materials with the help of the synthesis parameters within the manufacturing process. Additional 
problems are the difficult physico-chemical relationships of the interaction of complex structured 
sensitive solids with the vapour phase, which has not yet been completely understood [1]. Here, high-
throughput (HT) methods allow to create more efficient processes for the development of new gas 
sensors by introducing parallelization and miniaturization into the development processes, thus 
minimizing time and effort. Polymeric sensor materials bring a high diversity for the detection of 
chemical and biological agents in gases and liquids. Sensing concepts cover ion-selective electrodes, 
optochemical sensors, composite resistor polymeric films for vapours, conducting polymer biosensors, 
and polymeric biosensors. A typical example is the use of an 8 x 12 micro-array to deposit polymers 
by electrochemical synthesis, followed by HT characterization of response time, recovery time, 
reversibility, reproducibility, sensitivity and linearity [2]. Optical sensor materials are responsing to 
analytes with a change in optical properties, such as absorption, reflectivity, luminescence or optical 
decay. A typical example of HT development of such sensors is provided by Apostolidis et al., who 
describe the automated selection of most suitable combinations of polymers types and indicators with 
plasticizers for O2-detection [ 3 ]. The combination of HTE with microfluidics and micro- and 
nanofabrication and has been leading to innovative sensor solutions. The field of polymeric sensor 
materials has been reviewed recently by R. Potyrailo [4]. 

Several HTT have been developed, which allow extensive parameter screening for various types of 
sensor materials. The use of vapor deposition to prepare electrode arrays on Si wafer [5], is limited, 
since porosity, composition and microstructure, which affect sensing properties, cannot be controlled 
properly. Wet synthesis of mixed oxides was combined with a ceramic library on an Al2O3 library 
plate with 64 printed Pt electrodes for development of resistive sensors [6]. Sol-gel synthesis could be 
applied by the use of a special reactor, which allowed parallel measurement of temperature effects and 
resistance during exposure to pollutants [ 7 ]. Completely automated determination of sensoric 
responses with HT impedance spectroscopy (in the frequency range of 10 up to 107 Hz) has also been 
reported [8]. The complete set up for HT impedance screening for gas sensing materials has been 
described [7] with doped In oxides as potential sensor materials for hydrogen. A workflow and HT 
analysis with impressive visualization for screening of sensor properties applying a sequence of 
pollutants has also been reported [9]. HT-screening with gas sensor systems has also been explored in 
various applications by the group of Y. Yamada. They have combined gas sensing semiconductors for 
the rapid analysis of benzene derivatives in HTE [10]. 

In this work the use of HT-methods for the study of resistive gas sensors based on selected metal 
oxides should provide access to novel suitable materials. The advantage of the use of HT-methods 
compared to conventional methods here is, that 64 samples can be studied in parallel und the sensing 
conditions for all samples are identical, so the data are comparable.  Furthermore, the samples are 
prepared with the help of pipetting robots, so the reproducibility is high and rapid. Microstructural 
differences are avoided by using the identical procedure for all syntheses and film preparations. 
Furthermore, by using complex impedance spectroscopy as characterization tool it is not only possible 
to evaluate the sensor properties of the materials, but also to gain access to information on physical or 
surface-specific parameters such as the conductivity at grain boundaries or the mechanism of electrical 
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conduction within the sensor is obtained [11]. With reference to the sensor morphology it has to be 
differentiated between compact thin films, where an interaction with the gas only takes place at the 
geometric surface, and porous layers, where the whole volume provides active surface. 

The semi-conductive properties of metal oxides represent the basis for their use as resistive gas 
sensors, since the number of free charge carriers within the metal oxide and thus its electrical 
conductivity reversibly depends on the interactions with the ambient gas atmosphere. In classical 
sensor materials charge transfer either results from adsorption or chemisorption of gas molecules at the 
sensor surface (e.g. SnO2), or from diffusion of the gas into the bulk of the sensor material (e.g. TiO2) 
[ 12 ]. Fine-tuning of the sensor selectivity can be achieved e.g. by varying either the crystal 
structure/morphology, doping, or operating temperature. The necessary operating temperature of the 
sensor during application is adjusted by heating with a platinum wire, located within the material via 
an energy supply of approx. 1 Watt. Some examples of literature known resistive sensors materials for 
nitrogen oxides and hydrocarbons are given in table 1. The comparison of the limits of detection 
(LOD, defined as Rgas/ (Rreference · cgas) [1/ppm]) of these sensors at the optimal response temperature 
makes only sense regarding comparable concentrations of model gases. It originates in the nonlinear 
responding behaviour of sensors in general which results in a decrease of the relative change in the 
sensivity at high gas contents. 
 

Table 1. Figures of merits of comparable sensors for nitrogen oxides and short-chained hydrocarbons. 

materials
used

test gas response
temperature

c(gas) [ppm]/
LOD [1/ppm]

cross sensitivity
against

ref.

0.5 at% Ba/
In2O3

NO,
NO2

300°C 10/~1
3/~4

octane 13

Pt/NaZSM5 C3H8 500/~6·10-3 - 14

Pt/SnO2 NO,
NO2

room
temperature

20/~0.83
30/~0.24

- 15

SrTi0.6Fe0.4O3 C3H8 400°C 3000/~9.2·10-4 - 16

SnO2 C3H8 250°C 400/~0.14 CH4, toluene 17

Al, Ni/SnO2 LPG 300°C 600/~0.16 - 18

Pd, Sb, In/
SnO2

C3H8 500°C 500/~0.04 C2H5OH 19

BaTiO3 C2H4 500°C 700/~2.3·10-3 O2, NH3 20

LPG = Liquefied Petroleum Gas  
 

Unlike other classes of materials, mixed metal oxides offer the advantage of comparably simple 
production and broad availability, and at the same time provide the potential for a sufficiently low base 
resistance and an adequate durability in long-term operation. Their use is currently still restricted by 
the cross sensitivity of the known sensor materials. 
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Lately mixed metal oxides, which combine the positive sensor properties of the pure components, 
are used for gas detection purposes [12, 13, 14]. However, with the help of classical synthesis methods 
of oxidic sensors such as sputtering, CVD (chemical vapour deposition), PLD (pulsed laser 
deposition), and MBE (molecular beam epitaxy) [15, 16, 17] only thin films can be produced. It is 
often not possible to retain the properties of thin films while transforming them into bulk materials of 
porous powders, often used as sensor materials in industries. Thus, in order to enable combinatorial 
synthesis and measurement of bulk resistive gas sensors, this work is based on the production of thick 
porous metal oxide films. An additional advantage of thick porous films is the large specific surface 
areas as well as the long residence time of the gas species, which results from diffusion into the 
material.  

In general, the screen print process is a widespread method to produce 1 to 300 µm thick films  in 
research and development. Relative to the classical methods, such as impregnation and co-
precipitation, the sol-gel technology offers several advantages for the production of mixed oxides, 
since it allows broad variations in precursors and directed introduction of doping elements. 
Furthermore, the sensor morphology can be well tuned by the adjustment of synthesis parameters,  the 
drying period, calcination times and temperatures. Up-scaling and transformation into pastes of 
optimised sol-gel-based porous powders can be more easily handled than materials, created with the 
help of other preparation methods. The combinatorial synthesis of mixed-oxide inorganic materials is 
common practice. [18, 19]. However, in order to produce inorganic films of µm thickness additional 
factors have to be considered. The homogeneous film-formation by direct application of a sol onto a 
support medium is affected by the gel-forming process. On the one hand, cracks and poor adhesion of 
the films can result from syneresis through aging of the gel films or by rupturing of the films caused by 
the strong capillary forces during gel drying. On the other hand, due to edge effects, which dominate 
the coatings of small areas, the critical film thickness is often exceeded at the sensor edge, which cause 
the films to blister. To avoid these effects a complex process optimisation has to be carried through for 
each individual metal oxide system, e.g. by introducing additives without success guaranty. Weller for 
example produced perovskite-films in parallel at temperatures of up to 1200 C° by direct formation of 
oxide sols on the substrate, where problems such as crack-formation, inhomogeneous film-forming, 
and soaking of solutions through the mask could not be avoided [20]. This work describes the 
development of an alternative preparation method, which does not rely on direct sol application, but 
uses instead unstable suspensions of pre-manufactured metal oxides as starting materials for the 
combinatorial thick film preparation. A similar procedure has already been used for manual production 
of TiO2 thick-films on Al2O3 by Savage [21]. Sterzel and Kuehling [22] have patented a procedure 
based on the application of suspensions, stabilized by dispersing agents. Gao has used inkjet printing 
of metal oxide suspensions to combinatorially produce thick films of rare-earths metal oxides [23]. In 
this study, the suspensions are stabilized by time-consuming milling of oxide powders mixed with 
water.  

The goal of our investigations focuses on the development of a methodology for an high throughput 
synthesis of thick film sensors as well as a screening tool for sensor testing to discover new selective 
material classes. Important sensor parameters like film thickness, porosity, microstructure, phase 
purity or sintering temperature cannot be investigated in detail in this combinatorial workflow. These 
properties should be analyzed and improved in a subsequent conventional optimization step with 
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selected new materials. For the combinatorial sensor synthesis of this work SnO2, WO3, ZrO2, and 
TiO2, the classical sensor materials, were chosen as base oxides as well as the oxides CeO2, In2O3, and 
Bi2O3. CeO2 is an n-doped semi-conductor and a potential sensor material with a good stability against 
corrosive and reductive gases [24]. Due to the large number of oxygen defects in the lattice, In2O3, 
which is also an n-type semiconductor, is well known to possess a high electrical conductivity and to 
be a sensorically active material, especially in combination with tin oxide (ITO) [25]. Bismuth oxide 
films show remarkable catalytic properties in oxidation reactions due to the high oxygen ion mobility 
at the film surface, and, thus, are highly interesting for the development of sensors [26]. A new and 
easy strategy for the combinatorial synthesis of thick film sensors using this metal oxides is revealed. 
After exposing suitable sensor libraries containing doped base oxides with the selected set of test gases 
in synthetic air (H2, CO, NO, NO2, propene) the materials are evaluated regarding their sensor 
properties and inter-sensitivities with the help of the complex high-throughput impedance 
spectroscopy (HT-IS). Basic requirement for the HT-IS measurements is a sufficient electric 
conductivity of the semiconductor base oxides which depends on their different band gaps. It was also 
examined whether the parameter selectivity and electric conductivity of the sensor could be improved 
by forming mixed oxides of selected materials. This report will exemplarily present some trends and 
results of these investigations. This is a high throughput investigation with emphasis on screening and 
function. It does not provide optimal materials, but the relative behaviour of potential sensor materials 
under comparable sensing conditions. To turn these materials into useful sensors would require 
optimisation of the solid state synthesis, materials characterization and conventional testing. 

2. Experimental 

The application of the thick film sensors was carried out on an aluminium oxide support of a lateral 
size of 110 x 110 mm2, which is structured by 64 inter-digital capacitors made of Pt and which allows 
to parallely produce 8x8 coatings [27]. By means of the synthesis robot (Packard Multiprobe II EX) 
the prefabricated suspensions were introduced into a synthesis reactor that allows a suspension 
application of a maximum of approx. 120 µl over a mask into a cavity above the sample spot (diameter 
of 4 mm) [828]. To guarantee their utmost homogeneity the mixed-oxide powders were milled in a ball 
mill, and, afterwards, the larger particle aggregates were separated by wet filtration with the help of an 
analysis sieve (10 µm pore size), in order to prevent the pipetting tip of the synthesis robot to be 
clogged. A suspension of the sieve fraction was prepared using a suitable alcohol (concentration: 20 
through 40 mg/ml), and was stirred with approx. 1000 rpm during the sensor formation. For this 
purpose, a magnetic stirrer or a multiple magnetic stirrer plate were used by the robot during slurry 
preparation. The doping agents were already introduced during the preparation of the slurry.  

The base oxides and the suspensions (slurries) were prepared according to the following recipes:  
SnO2: 2.40 ml acetylacetone in 4.00 ml THF are added to a solution of 3.03 g Sn(IV)isopropoxid 

(98%, Alfa Aesar) in 7.09 ml THF. 200 µl 1M HNO3 in 4.00 ml THF are added dropwise. After 5 min. 
200 µl 1 M HNO3 are added. The resulting gel is dried at 100 °C and milled in an agate mortar. The 
resulting powder is calcined for 6 h at 400 °C (heating rate: 100 °C/h). The slurry is prepared from a 
mixture of 10 ml polyethylene glycol 600 (purum, Roth; 5 wt% in isopropanol), 116 mg SnO2 in 4 ml 
isopropanol, and, if necessary, 2 ml of the dopant solution in isopropanol. 
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WO3: 584.1 µl HNO3 (65%), and, if necessary, 0.25 molar aqueous doping salt solutions are added 
to a solution of  8.18 g ammonium (meta)tungstate hydrate (purum, Fluka) in 30 ml water. The sol is 
dried at a temperature of 80 °C, milled and calcined for 6 h at 500 °C (heating rate 100 °C/h). The 
slurry is prepared from the powder and isopropanol with a ratio of 30 mg : 1 ml.  

ZrO2: 200 µl HNO3(65%) is added to a solution of 2.00 g zirconium(IV)-propoxid (70%, ABCR) 
in 2.00 ml THF and stirred for 90 min. The hydrolysis is carried out after adding 100 µl water in 6.5 
ml THF. The sol is dried at 40 °C until it forms a transparent gel, which is milled and dried again, first 
for 2 h at 60 °C and then for 2 h at 80 °C. The calcination is carried out for 6 h at 500 °C (heating rate 
100 °C/h). The slurry is prepared from 191 mg powder in 8 ml isopropanol, and, if necessary, 2 ml of 
the dopant solution in isopropanol. In order to improve the adhesion properties on the substrate a 
mediating sol, consisting of 2.88 g zirconium(IV)propoxid (70%), 0.45 ml ethyl acetoacetate, and 3.94 
ml isopropanol is added. 

Bi2O3: 1.00 g HNO3 (65%), and 295 mg polyvinyl alcohol Mowiol 18-88 (Clariant, 10% in H2O) 
are added to a solution of 1.00 g Bi(NO3)3*5 H2O (>99%, Fluka). The sol is dried at 90 °C until a 
transparent glass is formed, which is milled and calcined for 6 h at 500 °C (heating rate 100 °C/h). The 
slurry is prepared from 168 mg powder in 5 ml 1-propanol, and, if necessary, 2 ml of doping solution 
in 1-propanol. The mediating sol is made by mixing 147 mg Bi(III)-2-ethyl-hexanoat (Alfa Aesar), 
8.00 g 1-Propanol, and 23 mg acetylacetone and added to the slurry.  

TiO2: 15.2 g Ti(IV)isopropoxid (97%, Aldrich) is added dropwise to 24.3 g 1-propanol and 1.12 g 
HNO3 (65%). After stirring for 30 min 3.00 g water are added dropwise for hydrolysis. The gel is dried 
at 90 °C. Calcination is carried out for 6 h at 700 °C (heating rate of 100 °C/h). The slurry is prepared 
from 179 mg oxide in 10 ml isopropanol, and 0.62 g of the mediating sol in 9.38 ml 1-Propanol. The 
mediating sol consists of 1.90 g Ti(IV)isopropoxid, 1.34 g acetylacetone, 0.14 g HNO3 (65%), 0.188 g 
water, and 2.42 g 1-propanol. 

CeO2: 0.259 g HNO3 (65%), and 1.93 g polyvinyl alcohol Mowiol 18-88 (Clariant, 10 wt% in H2O) 
are added to 5.75 g cerium nitrate (99+%, Fluka) in 47.5 g water. The sol is dried at 90 °C. Calcination 
is carried out for 6 h at 700 °C (100 °C/h heating rate). The slurry is prepared from 298 mg oxide in 10 
ml ethanol. The mediating sol consists of 0.58 g cerium nitrate, 144 mg polyethylene glycol 600 (10 
wt% in ethanol), 26 µl HNO3 (65%), and 5.65 ml ethanol. 

In2O3: 2.00 g indium nitrate (99.99%, Aldrich) is mixed with 10 ml propionic acid and heated to 
140 °C until the formation of nitrous oxides is completed (fill up again with propionic acid may 
become necessary). The transparent glass is milled and is calcined for 6 h at 500 °C (heating rate of 20 
°C/h). The suspension consists of 150 mg oxide powder and 5 ml 1-propanol.  

In2O3/WO3 mixed oxide library: Adaption of the In2O3-recipe to the water-based WO3 oxide recipe. 
0.367 g polyvinyl alcohol Mowiol 18-88 (Clariant, 10% in water), and 37 µl HNO3 (65%) are added to 
1.74 g In(NO3)3*5 H2O in 6.77 ml water, and are stirred. An equimolar WO3 solution is made 
according to the above recipe. A composition spread is created using an increment of 10 at% under 
addition of a 0.02 molar solution of the bulk doping agent in water. 1.5 ml of the mixed oxide soles are 
pipetted into Eppendorf vials, shaken, dried at 70 °C and are calcined in GC vials for 6 h at 500 °C. 
The suspensions consist of 18 mg mixed-oxide powder in each case and 1.2 ml isopropyl alcohol.  

In order to prepare the material libraries with one main component the oxides were suspended into 
glasses with a lid, and were stirred at 1000 rpm during pipetting by the synthesis robot. To prepare the 
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mixed-oxide sensors the suspensions were filled into GC vials, simultaneously stirred by a multiple 
magnetic stirrer, and were pipetted one after the other. As to the synthesis of the In/W mixed-oxide 
library, both base oxides were made by using one common recipe. The pipetting volume of the 
suspensions was adjusted to a quantity of oxide per sample spot on the aluminium oxide support, 
which corresponds to a nominal film thickness (relating to dense oxide) of the sensors of approx. 10 
µm. The actual film thickness will be considerably larger due to the fact that a porous film will be 
formed. Surface dopings can be applied by primarily introducing suitable solutions of the selected 
precursor of the doping element.  

After deposition of the suspensions by the robot the solvent is evaporated at ambient temperature, 
the sample plate is removed from the synthesis reactor, and is calcined (heat to 180 °C with 1°C/min, 
maintain for 1 h, heat to 450 °C, maintain for 1 h, heat to 700°C (500°C for In2O3), maintain for 1 h, 
cool down). After supplying the gases the regeneration of the sensors is carried out by calcination for 1 
h in ambient air at a temperature of 700 °C. 

The high-throughput impedance spectroscopy is carried out with a set-up described by Simon and 
coworkers [27]. In order to save the synthesis and measurement data as well as to evaluate the data a 
project-oriented database (MS Access™) was used [2829]. The composition of the mixed-oxide library 
samples was studied by X-ray fluorescence spectroscopy with the system EAGLE µ-PROBE II 
(Röntgenanalytik Messtechnik) with the help of an x-y-z-table. The XRD measurements were carried 
out with a diffractometer (Siemens D5000) equipped with Bragg-Brentano-type path of rays and a 1-
mm-collimator aperture stop.  

With respect to the impedance spectroscopy (IS) measurements 4 target temperatures (400, 350, 
300, and 250°C) were fixed in order to test the sensors, and were activated ranging from the highest to 
the lowest temperature. Within the measurement procedure the test gases that are primarily mixed with 
synthetic air are introduced sequentially with pure synthetic air, which serves as a reference gas. The 
gas supply of the sensor libraries is carried out for 15 min for each gas according to the following 
listing: air, H2 (50 ppm), air, CO (50 ppm), air, NO (5 ppm), air, NO2 (5 ppm), air, and propene 
(50 ppm), air. Here, the reversibility of the sensor performance is evaluated by supplying synthetic air 
after each supply of test gas.  

3. Results 

3.1. Sensormaterials based on single oxides 

The method of applying metal oxide suspensions compared with the sol-gel method of direct coating 
offers the advantage of a controlled synthesis of the base oxides prior to the actual coating, which 
enables a more defined introduction of bulk and surface doping. Here, bulk doping means that the 
doping element is homogeneously distributed in the bulk of the matrix oxide. Furthermore, it is 
advantageous to separate oxide synthesis and film application in order to maintain a higher variability 
in the automated workflow. The doped metal oxide powder is prepared from the element precursors, 
acid, solvent, and the especially for the system optimised additives (complexing agents, organic 
binding agents, doping substance) as shown in fig. 1.  
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Figure 1.  Workflow for the coating of suspensions. 

For coating additional adhesive agents (bonding agents or oxide soles) and a surface doping agent 
may have to be added. In addition to introducing the adhesive agent the adhesion on the Al2O3 support 
is also improved by sintering the particles during the thermal post-treatment at 700 °C. Fig. 2 shows 
the temporal course of film forming during the robot-controlled pipetting procedure. The solution 
containing the surface doping and the adhesive agent is pipetted into the cavity of the mask over a 
sample spot in the synthesis reactor, positioned above one of the 64 inter-digital capacitors of the 
substrate (a). The slurries or suspensions are added at the end for even sedimentation on the bottom of 
the wells. In order to avoid the solution to leak, O-seals (Viton) are positioned between the mask and 
the substrate. After drying at ambient temperature a still loose porous film has formed (b) that is 
densified by calcination, which leads to better adhesion to the substrate (c).  

The tendency of the coatings to form cracks is significantly reduced relative to the direct coating 
with a sol, since the particle shedding after drying is rather loose and will gain density during the 
sintering. The magnification from the microscope image shows a homogeneous crack-free film formed 
by sedimentation, which is independent of the drying process of the suspension (see fig. 3). The high 
porosity and the large content of macropores formed in these films also guarantee an improved 
interaction of the atmosphere and its pollutants with the material. Table 2 lists the libraries of the first 
generation. To guarantee the adhesion of the oxide films on the substrate additional sol of the pure 
base oxide (except for Sn, and In) was first pipetted into the cavity of synthesis reactor. Here, the 
content of the base oxide within the sol corresponds to 10% of the oxide quantity of the suspension. 
This is necessary for metal oxides with a high melting point (e.g. CeO2, approx. 2600 °C), since the 
adhesion on the substrate could not be achieved by sintering alone. Consequently, the libraries with 
Indium as bulk material were sintered at only 500 °C due to the low melting point of 850 °C. Thus 
sufficient adhesion was obtained for Indium oxide without adding an adhesive agent. With respect to 
SnO2 adding an adhesive agent was advantageous. 
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Figure 2. Sequence of the film formation in the synthesis reactor a) after 
filling in the cavity of the mask, b) after drying c) after calcination. 

 

          
 

Figure 3. Light optical microscope image of a WO3 (left) and ZrO2 layer (right). 

 

In order to check the IS screening results each sensor was positioned in the respective library three 
times and the non-doped base material four times. Thus, 21 different materials per material library 
could be tested. The performance of the IS setup is evaluated by the measurement of a library 
containing 64 identical films of pure SnO2 as reference material. All sensors are showing a uniform 
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response to each test gas. Concerning the gas supply from the central position above the library, the IS 
response shows a slow decrease from the middle to the outer sensors. To compensate these deviations 
between different positions on a library, sensors with the same composition are statistically distributed 
as shown in fig. 4. This layout is used for the synthesis of all libraries. 
 

Table 2. Starting libraries, number of dopants and used primers. The amount of the bulk element in the 
primer sol corresponds to 10% of the amount in the oxide powder. Libraries are containing bulk- 

and/or surface dopants. 
 

bulk
oxide libraries surface-

dopants
content
[At%]

bulk-
dopants

content
[At%] primer

WO3 3 40 0.5 20 0.5 10% W-sol

SnO2 3 40 0.5 20 0.5 PEG 600

ZrO2 1 20 0.5 - - 10% Zr-sol

TiO2 1 20 0.5 - - 10% Ti-sol

CeO2 2 20 0.5 20 0.5 10% Ce-sol

Bi2O3 1 20 0.5 - - 10% Bi-sol

In2O3 2 20 0.5 20 0.5 -

 
 

 
1 2 3 4 5 6 7 8

1 13 18 5 11 7 19 17 12

2 14 19 15 0 1 16 11

3 16 2 3 4 5 0 2

4 17 6 7 8 9 10 6 3
5 18 15 11 12 13 14 15 4

6 8 1 16 17 18 19 9

7 10 5 0 1 6 2 7

8 9 4 13 14 10 12 3 8

 
 
Figure 4. Equal distribution of sensor with 20 different dopants on a library due to the gas flow of the 
HT-IS setup. Each sensor is deposited three times for reproducing reasons, black fields represent the 

undoped samples. 

 
It was found that the basic conductivity of sensor libraries with Ce, Bi, Ti, and Zr base oxides was 

too low due to their high semiconductor band gaps, therefore materials performance could only be 
carried out via direct current measurements. Introducing bulk dopants did not enhance the basic 
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conductivity of these materials either. Therefore, these matrix materials could not by used any further. 
The basic materials W, Sn and In oxide alone showed already sufficient conductivity for IS 
applications and were consequently selected for further development. The characteristic for evaluation 
of a suitable sensor material was based on the highest sensitivity for the test gas combined with an 
cross-sensitivity of less than 10 % to the other gases, which was set with the help of the respective 
filter options of the data base. In addition, the results were checked for reproducibility by comparing 
them with the data of the two identical materials on the same substrate. The response of the sensors to 
the test gases is described by the calculated relative sensitivity [28]. The relative sensitivity is defined 
as S = ±(Rmax –Rmin)/Rmax, with Rmax being the maximum and Rmin being the minimum resistance of a 
sensor, measured by HT-IS. The algebraic sign of the sensitivity indicates whether the resistance is 
enhanced or reduced when supplying a test gas. The results of the HT-IS measurements clearly show 
that the classical SnO2-based sensors dispose of very good response properties, but selectivity for a 
single gas is only found with a few materials for NO2 relative to NO at low temperatures. Sensors 
based on indium, and tungsten oxide show with almost all dopants a significant response to the test gas 
propene. Therefore, the search for a selective sensor that does not show any response or cross-
sensitivity for propene was stopped. The sensitivity to the test gases H2, CO, and NOx is affected by 
variation of the temperature as well as variation of the nature of the dopant. The temperature effect is 
shown in fig. 5 with the response to NOx on the doped In-oxides. When enhancing the temperature the 
0.5 at% surface doped indiumoxide sensor (In99,5Ag0,5Ox) reduces its sensitivity to both NO and NO2, 
while the Co-doped material suppresses the sensitivity to H2 at low temperatures, i.e. at low 
temperatures the sensor responses selectively to NOx and at higher temperatures it responses 
selectively to H2. The basic conductivity of the base oxide WO3 is significantly enhanced by using 
tantalum as bulk dopant. Using yttrium as bulk dopant improves the response properties of WO3 
samples with several surface dopants. The IS measurements of all libraries provided more than 40,000 
data records that can be visualized most effectively with the help of the database via hierarchic 
clustering.  
 

 
Figure 5. Influence of the temperature to the relative sensitivity S. Sensors: In99,5Ag0,5Ox (above) 

In99,5Co0,5Ox (below): X-Axis: chronology of test gas impact:  H2,  CO,  NO,  NO2, 
 propene,  synthetic air.  
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Among the most selective sensor materials found (see table 3) from the IS measurement data with the 
help of the database, some doped wolfram oxides show a significantly selective response to nitrous 
dioxide or to propene at a measurement temperature of 300 °C. The sensitivities of these sensors 
during the sequence of gases in the measurement are represented by the fingerprints shown in fig. 6 or 
7 respectively. These fingerprints show the relative responses of the sensor materials to the sequence 
of test gases. The marked fingerprints belong to materials, which show selective responses.  

Table 3. Selection of selective single sensors based on the HT-IS measurements. 
 

bulk doped
oxides test gas c(gas) [ppm]/

LOD [1/ppm] selectivity to temperature
[°C]

In99,5Co0.5Ox NO/NO2 5/0.18; 0.26 H2, CO 250

W99Co0.5Y0.5Ox
a NO2 5/0.40 NO, H2, CO 300

W98.3Ta0.2Y1Mg0.5Ox
b NO2 5/0.17 NO, H2, CO 300

W99.5Ta0.5Ox Propene 50/2.1·10-3 all gases 250

W99.5Rh0.5Ox CO 50/5.2·10-3 NO, NO2 400

a Co: surface dopant
b Mg: surface dopant  

 
In addition the variation of the sensors electric resistances has been sequentially measured in the 

constant current mode using a different high throughput setup [30]. Fig. 8a shows a visualisation of the 
fingerprints of these measurements of the different sensor materials (9 libraries, with a total of 2112 
profiles arranged vertically), whose sensitivities are arranged depending on similarity using 
hierarchical clustering (vertical axis). The sensitivity profiles are shown in the horizontal axis, where 
the responses of each material to the previously described sequences of test gases always followed by 
flushing with synthetic air, is shown at the temperature indicated in the left column. Besides the broad 
group of materials showing no sensitivities towards all gases, there are areas with response of the 
sensors to several gases (cross sensitive materials) as well as a few materials, which respond only to 
one single gas, but do not recover rapidly, as seen in the ongoing response without pollutant (fig. 8a, 
responses to air). Only sensors showing a selective response toward a single test gas are of interest for 
a practical application. Cluster areas with high selectivity towards NO or to propene have been 
extracted from 8a and are shown for clarity in fig. 8b. This map contains only the sensor profiles of fig 
8a, showing selective response to one test gas, profiles without selective performance have been 
filtered by the software. In table 4 further specifications of a selection of sensors belonging to these 
clusters are given. Particularly yttrium and tantalum doped tungsten oxides with different surface 
dopants are promising sensor materials for propene, while doped bismuth oxides and undoped tin 
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oxide seem suitable for the detection of NO. The materials listed in table 3 and 4 are only potential 
sensor materials (hits). For practical applications, these materials still need to be optimized by known 
technology until they meat the desired requirements. 

 
 
Figure 6. HT-IS screnning results of a Ta 0.2 at% and Y 1 at% bulk doped tungsten oxide library at 

300°C. Visualisation of the fingerprints using the software Spotfire™.  
Y-Axis: sensitivities, X-Axis: chronology of test gas impact:  H2,  CO,  NO,  NO2, 

 propene,  synthetic air. Framed sensor material: Mg0,5Ta 0,2Y1W98,3Ox 

 
 

 
 

Figure 7. Fingerprints of selected single sensors. 
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Figure 8. a) Hierarchical clustering map of the sensitivities based on the high-throughput constant 
current measurements using the data-mining software Spotfire™. Clustering algorithm: ’Complete 
Linkage’ of the Euclidean distances.  b) Cluster of high selective sensors towards NO or propene 

respectively extracted from a). 

3.2. Sensormaterials based on mixed oxides  

The properties of the sensors was attempted through the formation of mixed oxides, since it is well-
known that the formation of new compositions is associated with variation in properties and basic 
conductivity [13]. An In-W-oxide library with two binary composition spreads with a step-size 10 at% 
and different bulk dopants was prepared. Such a procedure requires the parallel synthesis of 22 mixed 
oxides for each system and an optimisation of the adhesion properties and film quality. For the high 
throughput applications a reduction of each batch was reduced to approx. 60 mg. The automated 
suspensing and stirring was carried out by a pipetting robot in GC vials. For the preparation of the 
mixed oxide sols stable aqueous In or W stock solutions were prepared, which contained both an 
organic binding agent and nitric acid. For sol preparation increasing W concentration gradually 
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improved the gelation process. After sol-preparation and gelation, the materials were dried and 
calcined in the vials. The resulting mixed oxides were pulverized with a glass rod and used for the 
preparation of the slurries mentioned above. The adhesion of the films on the support is obtained for 
single tungsten oxides with and for single indium oxides without a primer (see table 2). Though all 
slurries of the In-W composition spread were deposited on the library plate without any adhesive 
agent, only few films showed a tendency to delaminate (see fig. 9). The film quality of the remaining 
samples is comparable and not dependent on the sensors composition. 

Table 4. Examples of high selective materials extracted from the clusters of fig. 8b. 

bulk
oxide

test gas temperature
[°C]

bulk dopants
[0.5 At%]

surface dopants
[0.5 At%]

Sn NO 250-300 - -

Bi NO 250-300 - pure; Er, Sm, Sc, Y

W propene 350 Y
pure; Au, Co, Cr, Mg, Sc,
Eu

propene 300-400 Ta pure, Cu

In propene 350 Ce -

 
The potential sensor materials were examined by XRF, which confirmed the expected composition 

for the Co composition spreads and doped Co-based materials. Minor deviations were found in the 
samples doped with Th. These are presumably caused by the preparation procedure, since some sols of 
this composition spread showed a slight clouding during synthesis. Besides the reflexes of the mixed 
oxide materials the XRD measurements showed signals of the plate material and the platinum 
electrodes on the plate. The eleven samples of the composition spread indium/tungsten were prepared 
without doping. An orthorhombic mixed oxide phase In2(WO4)3 [29] with tungsten contents of 40 
through 90 at% and a rhombohedral indium-enriched phase In6WO12 [13] with a tungsten content of 
20 through 50 at% could be identified as known main phases. Up to a content of approx. 50 at% of W 
or respectively of In the pure oxides were detectable as additional compounds. Thus, defined indium 
and tungsten compounds and not just solid solutions in the pure base oxides have been formed. 
Furthermore, it could be shown that parameters with respect to the technical process such as sintering 
temperature and time strongly influence the phase characteristics. This is shown when the library is 
sintered at 700 °C for 7 days since the minor phases disappear and the crystallinity of the materials 
increases. Therefore, these parameters must be adapted to the operating temperature of the final sensor 
in order to guarantee a long-term stability. The high throughput synthesis technology of composition 
spread preparation via application of oxide suspensions is thus a suitable tool for the rapid discovery 
and development of mixed-oxide materials with new sensor properties for resistive gas sensing 
applications. Based on the HT-IS measurements, only few compositions qualified for further 
developments, since the basic conductivity of most materials was too low. Due to this limitation, 
which is strongly dependent on the mixed oxide composition, the further sensor optimisation is 
restricted to materials containing only one single oxide. 
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Figure 9. Image of the In/W mixed oxide library. 
 

4. Summary and Conclusion 
 

Based on combinatorial procedures a simple synthesis method for creating thick porous metal oxide 
films within the range of approx. 10-20 µm has been developed. Seven different base oxides were 
selected, which were used to generate homogeneous films by implementing respectively bulk and/or 
surface dopants as well as adhesive agents. Advantage of this synthesis strategy is the easy application 
to other metal oxide by proper selection of the adhesive agent. The resulting films were optimised with 
respect to their characteristics as resistive gas sensors. The materials were ranked according to 
performance under identical sensing conditions. By variation of the doping elements both the base 
conductivity of the materials and the cross-sensitivities to other gases under HT-conditions could be 
improved. It has been shown, that with miniaturizing and parallelizing procedures it is possible to 
generate mixed-oxide sensor libraries, which can be screened rapidly for gas sensing properties. The 
method presented allows to rapidly screen large parameter spaces of composition and preparation 
processes for potential new resistive gas sensor materials. The materials discovered still have to be 
optimized, characterized and adapted for practical applications and commercialization. Here 
optimisation means optimizing the materials preparation for improved performance, reproducibility 
and stability under realistic sensing conditions. Characterization should target to understand the effect 
of the dopants and microstructure on the sensing properties. It should also clarify the phase 
composition, the homogeneity of the chemical composition and the chemical neighbourhood and 
oxidation states of the active elements.   
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